Another cathode material that can promise high energy density is the spinel LiNi0.5Mn1.5O4, which can exhibit a specific capacity >130 mAh g-1 at relatively high constant potential, around 4.7V, when being cycled in the 3.5-5V potential domain. Higher capacities ≥ 200 mAh g-1 can be obtained from these cathodes by cycling them in a wider potential range of 2.0-5V. However, their cycling at a wide potential domain is accompanied by a pronounced fading of the high capacity thus obtained, due to structural instability arising from Jahn-Teller distortion [9,10]. It is possible to develop Li and Mn-rich high capacity integrated spinel-layered cathode materials, comprising both spinel and monoclinic Li2MnO3 phases. For instance, Lee et al. reported a specific capacity of about 200 mAh g-1 for xLi[Li0.2Mn0.6Ni0.17Co0.03]O2.(1-x)Li[Mn1.5Ni0.425Co0.075]O4 (x=0.5 and 0.75) in a wide potential range of 2.0-5.0 V [11]. In 2015, Bhaskar et al. reported high specific capacities ≥ 200 mAh g-1 for x{0.6Li2MnO3·0.4[LiCo0.333 Mn0.333Ni0.333]O2}·(1–x) Li[Ni0.5Mn1.5]O4 (x=0, 0.3, 0.5, 0.7, 1) and found x=0.5 as the optimum for the high energy and high power performance of layered-spinel composite cathodes [12]. We also synthesized layered-spinel cathodes such as Li1.17Ni0.25Mn1.08O3, LiNi1/3Mn2/3O2 and LiNi0.33Mn0.54Co0.13O2by self-combustion based synthesis and demonstrated their better electrochemical performance as compared to cathodes comprising either layered or spinel phases [13, 14]. These results indicate that multiphase cathodes in which both layered and spinel phases are integrated, can be cycled in a wide potential range, deliver high specific capacity with prolonged cycling stability, thus improving the energy density of Li-ion batteries. We will present the results of our comparative studies that may allow us to select optimized compositions.
References
K. Mizushima, P.C. Jones, P.J. Wiseman, J.B. Goodenough, Mater. Res. Bull., 15, 783 (1980).
T. Ohzuku, Y. Makimura, Chem. Lett., 7, 642 (2001).
S.K. Martha, H. Sclar, Z. Framovich, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky, D. Aurbach, J. Power of Sources, 189, 248 (2009).
X. Li, Y.J. Wei, H. Ehrenberg, F. Du, C.Z. Wang, G. Chen, Solid State Ionics, 178, 1969 (2008).
P.K. Nayak, J. Grinblat, M. Levi, Y. Wu, B. Powell, D. Aurbach, J. Electroanal. Chem., 733, 6 (2014).
M. Gu, I. Belharouak, J. Zheng, H. Wu, J. Xiao, A. Genc, K. Amine, S. Thevuthasan, D. R. Baer, J-G. Zhang, N. D. Browning, J. Liu, C. Wang, ACS Nano, 7, 760 (2013).
M. Guilmard, A. Rougier, M. Gru¨ne, L. Croguennec, C. Delmas, J. Power Sources, 115, 305 (2003).
P.K. Nayak, J. Grinblat, M. Levi, E. Levi, S. Kim, J.W. Choi, D. Aurbach, Adv. Energy Mater., (Just Accepted).
C.Y. Ouyang, S.Q. Shi, M.S. Lei, J. Alloys Compd., 474, 370 (2009).
P.K. Nayak, J. Grinblat, M. Levi, O. Haik, E. Levi, Y-K. Sun, N. Munichandraiah, D. Aurbach, J. Mater. Chem. A, 3, 14598 (2015).
E.-S. Lee, A.Hug, H.-U. Chang, A. Manthiram, Chem. Mater., 24, 600 (2012).
- A. Bhaskar, S. Krueger, V. Siozios, J. Li, S. Nowak, M. Winter, Adv. Energy Mater., 5, 1401156 (2015).
- P.K. Nayak, J. Grinblat, M. D. Levi, O. Haik, E. Levi, M. Talianker, B. Markovsky, Y.-K. Sun, D. Aurbach, Chem. Mater., 27, 2600 (2015).
- P.K. Nayak, J. Grinblat, M. Levi, O. Haik, E. Levi, S. Kim, J.W. Choi, D. Aurbach, ChemElectroChem, 2, 1957 (2015).