346
Evaluation of Electrochemical and Safety Performance of Na-Ion Pouch Cells

Monday, 20 June 2016
Riverside Center (Hyatt Regency)
Y. S. Hu (Chinese Academy of Sciences)
Among advanced energy storage technologies, Li-ion batteries have been explored as power sources for various types of important applications, such as portable electric devices and electrical vehicles. Owing to the low abundance of lithium in the Earth's crust (0.0065%), large-scale applications of Li-ion batteries become questionable, especially if low cost and high efficient recycling technology could not be developed. Alternatively, Na-ion batteries are bound to being come up for energy storage, particularly as stationary batteries for smart grid, solar and wind energies, for which the demanding on energy densities of the power sources is not so seriously. On the basis of our recent development of  superior low-cost cathode and anode materials [1-14], we are able to make the Na-ion pouch cells. In this presentation, we will show the electrochemical and safety performance of Na-ion pouch cells. Furthermore, the materials cost of our Na-ion pouch cell is also estimated and compared with LiMn2O4/graphite and LiFePO4/graphite systems.

References:
1. Pan, H. L.; Hu, Y.-S.*; Chen, L. Q. Room-temperature stationary sodium-ion batteries for large-scale electric energy storage. Energy & Environmental Science 2013, 6, 2338-2360.
2. Sun, Y.; Zhao, L.; Pan, H. L.; Lu, X.; Gu, L.*; Hu, Y.-S.*; Li, H.; Armand, M.; Ikuhara, Y.; Chen, L. Q.; Huang, X. J. Direct atomic-scale confirmation of three-phase storage mechanism in Li4Ti5O12 anodes for room-temperature sodium-ion batteries. Nature Communications 2013, 4, 1870.
3. Wang, Y. S.; Yu, X. Q.; Xu, S. Y.; Bai, J. M.; Xiao, R. J.*; Hu, Y.-S.*; Li, H.; Yang, X. Q.; Chen, L. Q.; Huang X. J. A zero-strain layered metal oxide as the negative electrode for long-life sodium-ion batteries. Nature Communications 2013, 4, 2365.
4. Xu, S.-Y.; Wu, X.-Y.; Li, Y.-M.; Hu, Y.-S.*; Chen, L.-Q. Novel copper redox-based cathode materials for room-temperature sodium-ion batteries. Chinese Physics B 2014, 23, 118202.
5. Mu, L. Q.; Hu, Y.-S.*; Chen, L. Q. New layered metal oxides as positive electrode materials for room-temperature sodium-ion batteries. Chinese Physics B 2015, 24, 038202.
6. Li, Y. M.; Yang, Z.; Xu, S.; Mu, L.; Gu, L.*; Hu, Y.-S.*; Li, H.; Chen, L. Q., Air-Stable Copper-Based P2-Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium-Ion Batteries, Advanced Science 2015, 2, 1500031.
7. Mu, L. Q.; Xu, S.; Li, Y.; Hu, Y.-S.*; Li, H.; Chen, L.; Huang, X., Prototype sodium-ion batteries using air-stable and Co/Ni-free O3-layered metal oxide cathode, Advanced Materials 2015, 27, 6928.
8. Wang, Y.; Xiao, R.; Hu, Y.-S.*; Avdeev, M.*; Chen, L., P2-Na0.6[Cr0.6Ti0.4]O2 cation-disordered electrode for high-rate symmetric rechargeable sodium-ion batteries, Nature Communications 2015, 6, 6954.
9. Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.;Xu, S.;Yu, X*; Gu, L.*; Hu, Y.-S.*; Yang, W.; Kang, K.; Li, H.; Yang, X.-Q.; Chen, L.; Huang, X. Ti-substituted tunnel-type Na0.44MnO2 oxide as a negative electrode for aqueous sodium-ion batteries. Nature Communications 2015, 6, 6401.
10. Wang, Y.; Mu, L. Q.; Liu, J.; Yang, Z.; Xu, S.; Yu, X.*; Gu, L.*; Hu, Y.-S.*; Li, H.; Yang, X.-Q.; Chen, L.; Huang, X. A novel high capacity positive electrode material with tunnel-type structure for aqueous sodium-ion batteries, Advanced Energy Materials 2015, 5, 1501005.
11. Xu, S.; Wang, Y.; Ben, L; Lyu, Y.; Song, N.; Yang, Z.; Li, Y.; Mu, L. Q.; Yang, H. T.*; Gu, L.*; Hu, Y.-S.*; Li, H.; Cheng, Z.-H.; Chen, L.; Huang, X. Fe-based Tunnel-type Na0.61[Mn0.27Fe0.34Ti0.39]O2 Designed by A New Strategy as Cathode Material for Sodium-ion Batteries, Advanced Energy Materials 2015, 5, 1501156.
12. Wu, X. Y.; Jin, S. F.; Zhang, Z. Z.; Jiang, L. W.; Mu, L. Q.; Hu, Y.-S.*; Li, H.; Chen, X. L.; Armand, M.; Chen, L.; Huang, X., Unravelling the storage mechanism in organic carbonyl electrodes for sodium-ion batteries, Science Advances 2015, 1, e1500330.
13. Li, Y.; Mu, L.; Hu, Y.-S.*; Li, H.; Chen, L.; Huang, X., Pitch-derived amorphous carbon as high performance anode for sodium-ion batteries, Energy Storage Materials 2015, doi: 10.1016/j.ensm.2015.10.003.
14. Li, Y.; Hu, Y.-S.*; Li, H.; Chen, L.; Huang, X., A superior low-cost amorphous carbon anode made from pitch and lignin for sodium-ion batteries, Journal of Materials Chemistry A 2016, 4, 96.