In order to gain more in-depth insights about the lithium (de-)intercalation mechanisms in Li-rich layered oxides, track particularly the lithium ions in transition metal layer, operando neutron diffraction experiments were designed to quantitatively observe lithium migration in this type of oxides during the electrochemical process. In this study, we use amorphous silicon as an anode for the neutron diffraction battery design in order to avoid any overlap of signal that may be associated with the anode material. We perform operando neutron diffraction to probe lithium and oxygen for a high Li-rich (HLR), Li[Lix/3Ni(3/8-3x/8)Co(1/4-x/4)Mn(3/8+7x/24)O2 (x = 0.6) material, and low Li-rich (LLR), Li[Lix/3Ni(1/3-x/3)Co(1/3-x/3)Mn(1/3+x/3)O2 (x = 0.24) material with varying degrees of the high voltage plateau. In conjunction with the operando neutron diffraction, density functional theory (DFT) calculations were used to explore the incorporation of dilute oxygen vacancy, its affect on the lattice mechanics and oxygen positions. We also observe site-dependent lithium migration taking place during different stage of charging/discharge processes. Furthermore, this work demonstrates the potential of investigating dynamic changes of light elements in large format (10-100 times larger format than the typical operando cells for synchrotron X-ray diffraction) prismatic and cylindrical batteries under realistic cycling condition via operando neutron diffraction method.
Acknowledgements
UCSD’s efforts are supported by the Assistant Secretary for Energy Efficiency and Renewable Energy, Office of Vehicle Technologies of the U.S. Department of Energy (DOE) under Contract No. DE-AC02-05CH11231, Subcontract No. 7073923, under the Advanced Battery Materials Research (BMR) Program. The neutron experiments benefited from the SNS user facility, sponsored by the office of Basic Energy Sciences (BES), the Office of Science of the DOE. H.L. acknowledges the financial support from the China Scholarship Council under Award No. 2011631005. Y.C. acknowledge the support from U.S. DOE’s Office of Basic Energy Sciences, Material Science and Engineering Division. This work used the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant number ACI-1053575.
Reference
1. H. Liu, D. Qian, M. G. Verde, M. Zhang, L. Baggetto, K. An, Y. Chen, K. J. Carroll, D. Lau, M. Chi, G. M. Veith and Y. S. Meng, Acs Appl Mater Inter, 2015, 7, 19189-19200.
2. M. G. Verde, H. D. Liu, K. J. Carroll, L. Baggetto, G. M. Veith and Y. S. Meng, Acs Appl Mater Inter, 2014, 6, 18868-18877.
3. H. D. Liu, C. R. Fell, K. An, L. Cai and Y. S. Meng, J Power Sources, 2013, 240, 772-778.