This presentation highlights the fabrication of 3D microstructured electrodes using emulsion-templated carbon foams as scaffold for niobium oxide nanoparticles. As compared to commercially available carbon foams, they have higher specific surface areas and void sizes that are two orders of magnitude smaller.10-12The void size distribution, surface areas and electrical conductivity of the carbon foams can be fine-tuned by optimizing the synthesis conditions. A brief discussion will be presented in this regard. Niobium is known to form both stoichiometric and non-stoichiometric oxides. The mixed valency present in the nonstoichiometric oxides is associated with increased electrical conductivity.13 The semiconducting nature of these oxides makes them ideal candidates for high power applications. In this particular case, the carbon foam has been used for dual purposes: (1) to entrap the oxide nanoparticles and (b) to promote the reduction of part of the Nb5+ to Nb4+ at elevated temperatures:
Nb2O5 + δC à NbO2.5-δ + δCO
Two types of mixed valence oxides have been synthesized and investigated for potential applications in high power 3D microbatteries. Detailed discussions on the structures and electrochemical behaviors of the oxides will be offered in the presentation.
Figure 1. (A) SEM of NbOx-coated carbon foam (B) CV of electrode in (A)
1. K. Edström, D. Brandell, T. Gustafsson and L. Nyholm, Electrochem. Soc. Interface, 2011, 20, 41-46.
2. J. W. Long, B. Dunn, D. R. Rolison and H. S. White, Chem. Rev., 2004, 104, 4463-4492.
3. V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon and B. Dunn, Nat Mater, 2013, 12, 518-522.
4. M. Zukalová, M. Kalbáč, L. Kavan, I. Exnar and M. Graetzel, Chem. Mater., 2005, 17, 1248-1255.
5. T. Brezesinski, J. Wang, S. H. Tolbert and B. Dunn, Nat Mater, 2010, 9, 146-151.
6. M. Valvo, M. Roberts, G. Oltean, B. Sun, D. Rehnlund, D. Brandell, L. Nyholm, T. Gustafsson and k. Edstrom, Journal of Materials Chemistry A, 2013.
7. M. Roberts, P. Johns, J. Owen, D. Brandell, K. Edstrom, G. El Enany, C. Guery, D. Golodnitsky, M. Lacey, C. Lecoeur, H. Mazor, E. Peled, E. Perre, M. M. Shaijumon, P. Simon and P.-L. Taberna, J. Mater. Chem., 2011, 21, 9876-9890.
8. H. P. James, Z. Hui Gang, C. Jiung, V. B. Paul and P. K. William, Nat. Commun., 2013, 4, 1732-1732.
9. P. Johns, M. Roberts and J. Owen, J. Mater. Chem., 2011, 21, 10153-10159.
10. H. D. Asfaw, M. Roberts, R. Younesi and K. Edstrom, Journal of Materials Chemistry A, 2013, 1, 13750-13758.
11. H. D. Asfaw, M. R. Roberts, C.-W. Tai, R. Younesi, M. Valvo, L. Nyholm and K. Edstrom, Nanoscale, 2014, 6, 8804-8813.
12. D. Wang, N. L. Smith and P. M. Budd, Polym. Int., 2005, 54, 297-303.
13. O. G. D’yachenko, S. Y. Istomin, A. M. Abakumov and E. V. Antipov, Inorg. Mater., 36, 247-259.