607
Thin, Robust, Stable, High Performance Anion Exchnage Membranes for Elecrochemical Energy Conversion Applications

Monday, 27 July 2015: 14:40
Dochart (Scottish Exhibition and Conference Centre)
A. M. Herring, A. M. Maes, H. N. Sarode, Y. Liu, T. P. Pandey, B. R. Caire, M. W. Liberatore (Colorado School of Mines), E. B. Coughlin (University of Massachusetts, Amherst), and V. Di Noto (Department of Chemical Sciences - University of Padova)
The potential of anion exchange membrane (AEM) fuel cells to provide inexpensive compact power from a wider variety of fuels than is possible with a proton exchange membrane (PEM) fuel cell, has continued to drive the research interest in this area.  Alkaline catalysis in fuel cells has been demonstrated with non-precious metal catalysts, and with a variety of fuels beyond H2 and methanol. Alkaline fuel cells (AFCs), based on aqueous solutions of KOH, have serious drawbacks associated with system complexity and carbonate formation. Anion exchange membrane (AEMs) fuel cells have a number of advantages over both PEM fuel cells and traditional AFCs; however, although anionic conductivity in AEMs can be comparable to PEMs the chemical stability of membrane attached cations in hydroxide is still not always sufficient for practical applications.  The real issue is water transport; water is both a product and a reactant in these systems and wet cations are much more stable than dry.  Wetted cations are alos much more stable than dry cations.  So an understanding of water in these membranes is essential.

Here we discuss water and anion transport in a series of thin mechanically robust state of the rt experimental anion exchange membranes.  The membranes are generally constructed from an isoprene block and a vinyl benzyl bromide block,  either randomly or in di-, tri- or penta- block configurations.  Post quaterniaztion leads to functionalized AEMs.  We use electrochemical impedance spectroscopy to measure anion conductivity, multi-nuclear pulse field gradient spin echo NMR to measure self-diffusion, and broadband electric spectroscopy to measure the relaxation processes in these polymers.  This information is coupled with microscopy and SAXS to explore the polymer morphology.  Putting transport and morphology together allows us to describe a complete picture of water and anion transport in these systems.

We have begun to build direct fueled AEM fuel cells and electrolyzers for hydrogen and ammonia production from these membranes and their related ionomers.  We will alos show a few examples of the AEMs practical uses in single cell devices in this talk.