1484
Single Photon Avalanche Diode Imaging Systems for Biomedical Applications
The main components of a high-speed single photon imaging system is the SPAD, which converts a single photon to an electrical pulse, the SPAD front-end circuit, which shapes the pulse and controls the SPAD, and the time-to-digital converter (TDC), which converts the time interval between the detected photon and a reference pulse, or the time between two detected photons, into a digital code. Deep sub-micron (DSM) CMOS technology lends itself very well to the realization of such a system; all the components can be integrated together with very high reliability at a very low cost, digital processing can be readily applied to the detected photons, and dense arrays can be realized for multi-dimensional processing. Over the last decade, CMOS single-photon imaging systems have been applied in the fields of biomedical research, astronomy, nuclear physics, ranging and communications [2], [3], [4].
This work describes the design of the main components of a high-speed single photon imaging system for biomedical applications, implemented in a standard, commercial CMOS 0.13 μm technology from IBM. A passively-quenched SPAD pixel was characterized in terms of its noise, temporal resolution, efficiency, and temperature performance. By fabricating the SPAD in a DSM technology, we were able to take advantage of the inherent speed, lower parasitic capacitance, and increased integration density afforded by the CMOS process. Indeed, a dead-time down to 20 ns was achievable with the SPAD front-end circuit, since the total capacitance of the 9.6 x 8.5 μm2 SPAD remained below 100 fF. Also, a new dual-interpolating tapped-delay-line TDC prototype chip was designed and evaluated for a future integration with an SPAD in a multichannel fluorescent lifetime imaging / positron emission tomography (FLIM/PET) system. The design goals were to achieve simultaneously a high-resolution, high throughput, good linearity, wide measurement range, small size and low power. The 8-bit TDC chip measures time intervals with a 156 ns least-significant bit (LSB) between a common STOP pulse from a laser and a START pulse generated by an SPAD, as in a typical time-correlated single-photon counting (TCSPC) acquisition chain shown in figure 1. In this presentation, details of the key design issues and the results from extensive testing will be provided and discussed.
References
[1] Cova, S.D.; Ghioni, M., IEEE Photon. J., vol.3, no.2, pp.274-277, April 2011
[2] Markovic, E.; Tisa, S.; Tosi, A.; Zappa, F., Proc. SPIE, vol. 8033, no. 80330A, 2011
[3] Maruyama, Y.; Blacksberg, J.; Charbon, E., Proc. IEEE Int. Solid-State Circuits Conf., pp.110-111, 2013
[4] Fisher, E.; Underwood, I.; Henderson, R., IEEE J. Solid-State Circuits, vol.48, no.7, pp.1638-1650, 2013