766
Enhanced Photocatalytic Hydrogen Production By Surface Modification of p-Gap Photocathodes
GaP is a semiconductor material having 2.25 eV indirect bandgap and a theoretical maximum photocurrent density of about 12.5 mA/cm2. The best solar cells made of GaP show an open-circuit voltage of approximately 1.5 V and a maximum photocurrent density close to 2 mA/cm2. p-GaP utilized as a photocathode for hydrogen evolution shows significantly lower open-circuit voltage (+0.35 V RHE, with Pt cocatalyst), mainly because of inefficient charge separation at the semiconductor/electrolyte junction. Furthermore, this semiconductor suffers from corrosion in acidic conditions, thus requiring appropriate protection.
One approach for improving charge separation and open-circuit voltage consists of forming a p-n heterojunction on GaP. We deposit different n-type metal oxides (TiO2, Nb2O5, ...) thus forming an heterojunction which significantly enhances charge separation upon light irradiation by forming a built-in potential at the junction interface. This built-in potential effectively drives electrons towards the surface of the photoelectrode with the hydrogen evolution reaction occurring at more positive potential compared to the bare p-GaP under the same operating conditions.
The observed open-circuit voltage for the modified photocathodes is +0.70 V RHE, representing an increase of more than 300 mV compared to the pristine p-GaP semiconductor and marking an unprecedented value of open-circuit voltage for GaP-based photocathodes for hydrogen production. It is found that the high carrier density of the n-type oxides shifts the distribution of the built-in potential almost entirely towards the lightly doped p-type substrate and forms an asymmetric charge depletion region at the junction, as depicted in Figure 1. Moreover, TiO2shows excellent stability over long-time operation, unveiling its double role of brilliant material for both heterojunction formation and protection against corrosion of the substrate.
Further improvement of the aforementioned system and a favorable coupling with an efficient photoanode could lead to a scenario where photocatalytic water splitting is carried out without any external applied bias under solar light irradiation.
References:
Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S. Solar Water Splitting Cells. Chem. Rev. 2010, 110, 6446-6473
Grätzel, M. Photoelectrochemical cells. Nature 2001, 414, 338-344
Seger, B.; Pedersen, T.; Laursen, A. B.; Vesborg, P. C. K.; Hansen, O.; Chorkendorff, I. Using TiO2 as a Conductive Protective Layer for Photocathodic H2 Evolution. J. Am. Chem. Soc. 2013, 135 (3), 1057-1064
Lu, X.; Huang, S.; Diaz, M.; Kotulak, N.; Hao, R.; Opila, R. & Barnett, A. Wide Band Gap Gallium Phosphide Solar Cells. IEEE J. Photovolt., 2012, 2, 214-220
Kaiser, B.; Fertig, D.; Ziegler, J.; Klett, J.; Hoch, S.; Jaegermann, W. Solar Hydrogen Generation with Wide-Band-Gap Semiconductors: GaP(100) Photoelectrodes and Surface Modification. ChemPhysChem 2012, 13, 3053-3060
Butler, M. A.; Ginley, D. S. P-Type GaP as a Semiconducting Photoelectrode. J. Electrochem. Soc. 1980, 127 (6), 1273-1278