169
Enhanced Durability and Stability of Solid Oxide Fe-Air Redox Battery with the Carbothermic Reaction Derived Energy Storage Unit

Monday, May 12, 2014: 10:40
Bonnet Creek Ballroom III, Lobby Level (Hilton Orlando Bonnet Creek)

ABSTRACT WITHDRAWN

Recently, a new class of solid oxide metal air redox batteries has been demonstrated and investigated1-17. This new class of metal air redox batteries is based on a completely new energy storage mechanism, which takes the advantage of the solid oxide fuel cells (SOFCs) and hydrogen chemical-looping technologies1-10. The key components of these batteries consist of a regenerative solid oxide fuel cell (RSOFC) and a metal-metal oxide energy storage unit (ESU) 1-17. By substituting the chemistry of the element, the metal-air chemistries vary. So far we have successfully demonstrated the Fe-air1, 2, W-air8 and Mo-air7 redox batteries with this new battery concept. Other groups also studied several metal-air chemistries, including Fe-air11-15, Mg-air16 and Si-air17batteries.

However, only a few works reported the durability and stability of this type of batteries at the intermediate temperature range. Here we report that the carbothermic reaction derived Fe-based ESU can enhance the durability and stability of such a battery by 214%, compared with our previously reported Fe-based ESU in 100 continuous discharge-and-charge cycles. Our preliminary results show that the enhancement is due to the highly porous nanostructure (as shown in Fig.1) obtained by the carbothermic reaction.

References

1.         N. Xu, X. Li, X. Zhao, J. B. Goodenough and K. Huang, Energy & Environmental Science, 2011, 4, 4942-4946.

2.          X. Zhao, N. Xu, X. Li, Y. Gong and K. Huang, RSC Advances, 2012, 2, 10163-10166.

3.         X. Zhao, Y. Gong, X. Li, N. Xu and K. Huang, J. Electrochem. Soc., 2013, 160, A1716-A1719.

4.         X. Zhao, Y. Gong, X. Li, N. Xu and K. Huang, J. Electrochem. Soc., 2013, 160, A1241-A1247.

5.         X. Zhao, N. Xu, X. Li, Y. Gong and K. Huang, ECS. Trans., 2013, 50, 115-123.

6.         X. Zhao, N. Xu, X. Li, Y. Gong and K. Huang, ECS. Trans., 2013, 45, 113-121.

7.         X. Zhao, Y. Gong, X. Li, N. Xu and K. Huang, Journal of Materials Chemistry A,  2013,1, 14858-14861.

8.         X. Zhao, X. Li, Y. Gong, N. Xu, K. Romito and K. Huang, Chemical Communications, 2013, 49, 5357-5359.

9.         X. Zhao, X. Li, Y. Gong and K. Huang, Chemical Communications, 2013, DOI: 10.1039/C3CC47673A.

10.       M. Guo, X. Zhao, R. E. White and K. Huang, J. Electrochem. Soc., 2013, 160, A2085-A2092.

11.       H. Landes, R. Reichenbacher, ECS. Trans., 2013, 50, 47-68.

12.       A. Inoishi, Y. W. Ju, S. Ida and T. Ishihara, Journal of Power Sources, 2013, 229, 12-15.

13.       A. Inoishi, S. Ida, S. Uratani, T. Okano and T. Ishihara, Physical Chemistry Chemical Physics, 2012, 14, 12818-12822.

14.       A. Inoishi, S. Ida, S. Uratani, T. Okano and T. Ishihara, RSC Advances, 2013, 3, 3024-3030.

15.       W.Drenckhahn, H.Greiner, M.Kuhne, H. Landes, A. Leonide, K. Litzinger, C. Lu, C. Schuh, J. Shull and T. Soller, ECS. Trans., 2013, 50, 125-135.

16.       A. Inoishi, Y.W. Ju, S. Ida and T. Ishihara, Chemical Communications, 2013, 49, 4691-4693.

17.       A. Inoishi, T. Ishihara, S. Ida, Y. W. Ju and T. Sakai, Journal of Materials Chemistry A, 2013 2013, DOI: 10.1039/C3TA14023G.