36
Modular Electrolyte Additives: Decoupling Uniform Deposition and Stability
Modular Electrolyte Additives: Decoupling Uniform Deposition and Stability
Tuesday, May 13, 2014: 10:40
Bonnet Creek Ballroom I, Lobby Level (Hilton Orlando Bonnet Creek)
The stability and cycle life of lithium-ion batteries are limited by unfavorable reaction between the electrodes and electrolyte. To reduce this problem, electrolyte additives are used to passivate the cathode and/or anode with a protective coating. To function effectively, such additives must both deposit uniformly on the electrode surface and form an electrochemically inert coating. These dual constraints severly limit the set of viable additives.
Wildcat Discovery Technologies has developed a new, modular additive concept in which additives are bound to a molecular core that enables uniform deposition on the electrode surface. Attachment of conventional additives to the core molecules provides improved SEI stability, increasing coulombic efficiency, cycle life, and thermal stability. Furthermore, by decoupling the requirements for uniform coating and chemical stability, new classes of additives can be used. In this talk, I will discuss the development of these modular additives as well as their performance with a both commercial and future cell chemistries.
Wildcat Discovery Technologies has developed a new, modular additive concept in which additives are bound to a molecular core that enables uniform deposition on the electrode surface. Attachment of conventional additives to the core molecules provides improved SEI stability, increasing coulombic efficiency, cycle life, and thermal stability. Furthermore, by decoupling the requirements for uniform coating and chemical stability, new classes of additives can be used. In this talk, I will discuss the development of these modular additives as well as their performance with a both commercial and future cell chemistries.