321
Optimal Charging Profile for Mechanically Constrained Lithium-Ion Batteries Using Reformulated Pseudo Two Dimensional Models
When conventional charging profiles for lithium-ion batteries (e.g., constant current followed by constant voltage) are deployed, they do not consider capacity fade mechanisms. These charging profiles are not only inefficient in terms of lifetime usage of the batteries but also slower (4) as they do not exploit the changing dynamics of the system. The progress made in understanding the capacity fade mechanisms (5-8) has paved the way for including that knowledge in deriving optimal control. This work explores the possibilities of using transport and electrochemical-based models in deriving open-loop optimal charging profiles that minimize capacity fade by restricting the development of stresses in the solid phase as well as other capacity fade mechanisms.
Acknowledgements
The work presented herein was funded in part by the Advanced Research Projects Agency – Energy (ARPA-E), U.S. Department of Energy, under Award Number DE-AR0000275.
References
1. B. Suthar, V. Ramadesigan, S. De, R. D. Braatz and V. Subramanian, Physical Chemistry Chemical Physics (2013).
2. P. W. C. Northrop, V. Ramadesigan, S. De and V. R. Subramanian, J. Electrochem. Soc., 158, A1461 (2011).
3. S. Santhanagopalan, Q. Guo, P. Ramadass and R. E. White, Journal of Power Sources, 156, 620 (2006).
4. R. Klein, N. A. Chaturvedi, J. Christensen, J. Ahmed, R. Findeisen and A. Kojic, Proceedings of the American Control Conference, p. 382 (2011).
5. J. Christensen and J. Newman, J Solid State Electr, 10, 293 (2006).
6. S. K. Rahimian, S. C. Rayman and R. E. White, J. Electrochem. Soc., 157, A1302 (2010).
7. P. Arora, R. E. White and M. Doyle, J. Electrochem. Soc., 145, 3647 (1998).
8. R. Deshpande, M. Verbrugge, Y.-T. Cheng, J. Wang and P. Liu, J. Electrochem. Soc., 159, A1730 (2012).