2132
Investigation of the Hydroxyl Radical Sensor with Conductance Change of Polyaniline
Figure 1 (a) and (b) show the schematic of hydroxyl radical sensor and the top-view of the devices, respectively. The sensor consists of two metal electrodes made by 200 Å Ti and 1000 Å Au deposited with an e-beam evaporator on a Si3N4/Si substrate. The length and the width of the Au electrodes are 500 μm and 100 μm, respectively. The gap between the two metal electrodes is 10 μm. 0.3 g polyaniline emeraldine base powder was dissolved in 5 mL dimethyl sulfoxide (DMSO) with stirring for 6 h. The polyaniline solution was then mixed with the same volume of 0.01 M NaOH. Use centrifuge to separate two different phase in the solution and pipet out the upper layer of the solution. Propane sultone was added into the polyaniline solution with the ratio 3:7 and stood for 6~8 hr over 30 degree Celsius. Also use centrifuge to separate two different phase in the solution and pipet out the upper layer of the solution. 2 μL of the remaining solution was coated on a chip and baked for 2.5 hr. The hydroxyl radical was generated from Fenton reaction as shown below:
Fe2+ + H2O2 → Fe3+ + OH°+ OH-
Figure 2 (a) shows significant current (or conductance) decrease approximately 84 μA of hydroxyl radical sensor after dropping hydrogen peroxide. It indicates that hydroxyl radical reacted with polyaniline and stole electron from polyaniline inducing current decrease. The current of the sensor was measured at a constant bias of 0.1 V at room temperature by using Agilent B1500 parameter analyzer with the polyaniline layer exposed. The interval time between any two measurement points is 1 minute. The final concentration of ferrous ion and hydrogen peroxide are 25 mM and 100 mM, respectively. Both two solutions were prepared in citrate phosphate buffer solution. Figure 2 (b) shows the current of sensor after dropping the hydrogen peroxide without ferrous ion. The current doesn’t change significantly. It indicates that the sensor doesn’t react with the hydrogen peroxide. Therefore, we can verify that the signal in figure 2 (a) is from hydroxyl radical, not from hydrogen peroxide.
In summary, we develop a simple and cheap sensor to detect hydroxyl radical. The sensor shows significant conductance change when reacting with hydroxyl radical. We will further test different concentration of hydroxyl radical and confirm the mechanism in the future.
This work was partially supported by National Science Council grant (101-2221-E-007-102-MY3) and by the research grant (101N7047E1) at National Tsing Hua University.