1587
Invited: Advantages of Plasma Synthesis of Copper Oxide Nanowires

Tuesday, 7 October 2014: 11:30
Expo Center, 2nd Floor, Beta Room (Moon Palace Resort)
G. Filipič and U. Cvelbar (Jozef Stefan international postgraduate school, Jozef Stefan Institute)
Copper oxide is a semiconductor with a narrow band-gap (2.1 or 1.2 eV, depending on the oxidation state of the copper) and was as such a candidate for growing it in nanowire form. The nanowires can be used for electron field emission1, gas and cholesterol detection2,3, solar cells4, and photo-catalysis of water to hydrogen5. Due to extensive research and advancement it is no longer a question of “if we can grow copper oxide nanowires”, nor is it a question of “size or crystallinity”. Up to now the variety of methods have been developed which enable us a control over many attributes of the nanowires: we can grow them long or short, thick or thin, single- or poly-crystalline, we can also chose the oxidation number of copper (copper I or copper II oxide nanowires)6. The research has now progressed into finding how fast we can grow them, what is the most efficient way to grow them, and how precisely can we place them7,8.

Copper oxide nanowires can be grown using different routes:  solution based1,9,10, hydrothermal11,12, thermal oxidation13,14 or plasma oxidation15,16. Each has different approach, specifications and results. While other methods are fully described elsewhere, the introduction of the low pressure plasma method for growing copper oxide nanowires on surface of copper will be made. The results of the oxidation will be presented. Furthermore, the advantages and disadvantages of the said process will be exposed especially in comparison to thermal oxidation. 

  1. Maurer F., Dangwal A., Lysenkov D., Müller G., Toimil-Molares M.E., Trautmann C., BrötzJ., Fuess H., Nucl. Instr. and Meth. in Phys. Res. B, 245 (2006), 337;
  2. Arafat M.M, Dinan B., Akbar A.S., Haseeb A.S.M.A., Sensors, 12 (2012), 7207;
  3. Ibupoto Z.H., Khun K., Liu X., Willander M., Mater. Sci. Eng. C, 7 (2013), 3889;
  4. Yuhas B.D., Yang P., J Am Chem Soc., 131 (2009), 3756;
  5. Shi J., Li J., Huang X., Tan Y., Nano Res., 4 (2011), 448;
  6. Filipič G., Cvelbar U., Nanotechnology, 23 (2012), 194001
  7. Duc L.D., Le D.T.T., Duy N.V., Hoa N.D., Hieu N.V., Physica E, 58 (2014), 16
  8. Shao P., Deng S., Chen J., Xu N., Nanoscale Res. Lett., 6 (2011), 86
  9. Wang W., Wang G., Wang X., Zhan Y., Liu Y., Zheng C., Adv. Mater., 14 (2002), 67;
  10. Hong X., Wang G., Zhu W., Shen X., Wang Y., J. Phys. Chem C, 113 (2009), 14172;
  11. Liang N., Lei W., Bing S., Yinjue W., Wenli Z., Chao W., Yong J., Mater. Lett., 63 (2009), 2560;
  12. Zhu L., Chen Y., Zheng Y., Li N., Zhao J., Sun Y., Mater. Lett., 64 (2010), 976;
  13. Jiang X., Herricks T., Xia Y., Nano Lett., 2 (2002), 1333;
  14. Zhang b.Q., Xu D., Hung F.T., Zhang K., Nanotechnology, 24 (2013), 065602;
  15. Mozetič M., J. Phys. D: Appl. Phys., 44 (2011) 174028
  16. Cvelbar U., J. Phys. D: Appl. Phys. 44 (2011) 174014;