1762
Molecular Dynamics Study for Lithium Ion Diffusion in Layered LixCoO2 (x=0.5~1.0)
Here, we have improved the force field using embedded atom method to modify the total energies in accordance with amount of neighboring lithium ion. The force field parameters have been optimized to reproduce potential energy surfaces of several lithium diffusion paths estimated by DFT calculations. We also fit vacancy energies and elastic constants at several lithium configurations. In addition, ab initio MD results are used as a reference to reproduce finite temperature fluctuation. For validation, MD simulations in several temperatures were performed. The diffusion constants calculated from mean square displacement of lithium ion were good agreement with experimental results [1, 2] qualitatively. We will talk about microscopic picture of lithium vacancy ordering on that day.
References:
[1] J. Xie, N. Imanishi, T. Matsumura, A. Hirano, Y. Takeda, and O. Yamamoto, Solid State Ionics, 179, 362-370 (2008)
[2] J. Sugiyama, K. Mukai, Y. Ikedo, H. Nozaki, M. Mansson, and I. Watanabe, Phys. Rev. let. 103, 147601 (2009)
[3] M. Okubo, Y. Tanaka, H. Zhou, T. Kudo, and I. Honma, J. Phys. Chem. B, 113, 9, (2009)
[4] A. Van der Ven, and G. Ceder, Journal of power sources, 97, 529-531 (2001)
[5] K. Kang and G. Ceder, Phys. Rev. B, 74, 094105 (2006)
[6] A. Van der Ven, J. Bhattacharya, and A. A. Belak, Accounts of Chemical Research, 46, 5, 1216–1225 (2013)
[7] H. B. Yahia, M. Shikano, and H. Kobayashi, 25, 3687−3701 (2013)
[8] P. Parz, B. Fuchsbichler, S. Koller, B. Bitschnau, F. A. Mautner, W. Puff, and R. Würschum, Appl. Phys. Lett. 102, 151901 (2013)
[9] F. X. Hart and J. B. Bates, J. Appl. Phys., 83, 12 (1998)
[10] M. Nakayama, M. Kaneko, Y. Uchimoto, M. Wakihara, and K. Kawamura, J. Phys. Chem. B, 108, 3754-3759 (2004)
[11] C. A. J. Fisher, M. S. Islam, and H. Moriwake, J. Phys. Soc. Jpn., 79, 59-64 (2010)
[12] S. Lee and S. S. Park, J. Phys. Chem. C, 112, 6484-6489 (2012)