1955
(La,Sr)CoO3-Rgo Hybrid Oxygen Reduction Reaction/Oxygen Evolution Reaction Bifunctional Catalyst
The carbon support used in our ORR catalysts was black pearl (BP) 2000 [1]. In preliminary tests, however, we found that BP 2000 undergoes oxidization at potentials around ca. 1.2 V vs. RHE and above (data not shown). In this work, we used reduced graphene oxide (rGO) as an alternative support to synthesize oxidation resistant ORR catalysts. The OER catalyst we chose was a perovskite (La1-xSrx)CoO3-δ (LSC). Pre-synthesized LSC was added into the initial solution of the rGO based ORR catalyst synthesis process, and after drying and heat-treatment, bifunctional (LSC + rGO) catalysts were obtained. In measuring the OER activity of the LSC catalyst, acetylene black (AB) carbon was added to the LSC (LSC + AB) to increase the electrical conductivity. Fig. 1 shows the comparison of ORR/OER activities between (LSC + AB) and (LSC + rGO). As expected, the ORR activity of (LSC + rGO) is greatly improved by ca. 200 mV in terms of E½, in comparison to that of (LSC + AB). Interestingly even the OER activity of (LSC + rGO) becomes higher than that of (LSC + AB). Thanks to the enhancement of both ORR and OER activities with (LSC + rGO), highly active bifunctional catalysts are obtained. In this talk, material analysis results and diverse electrochemical performances of the (LSC + rGO) catalysts will be presented.
Acknowledgements
Support from the Directed Research of the Los Alamos National Laboratory’s Laboratory Directed Research & Development (LDRD-DR) is greatly acknowledged.
References
- Chung et al., Nat. Commun. 4, 1922 (2013).
- Suntivich et al., Science, 334, 1383 (2011).