19
Improved Electrochemical Performance of Multi-Phase Layered-Spinel Cathodes for Li-Ion Batteries
In the present study, we have synthesized layered-spinel composite cathode materials LiNi1/3Mn2/3O2 and LiNi0.33Mn0.54Co0.13O2 involving Li2MnO3 (monoclinic), LiNiO2 (rhombohedral) and LiNi0.5Mn1.5O4 (spinel) by self-combustion reaction (SCR). The Reitveld analysis and TEM study clearly indicates the presence of these phases. Interestingly, these cathode materials exhibited superior cycling stability when cycled in a wide potential range of 2.3-4.9 V vs. Li (Fig. 1). LiNi1/3Mn2/3O2 exhibited an initial specific capacity of 80 mAh g-1 which increased to about 220 mAh g-1 after 20 cycles and then a stable capacity is observed even after 100 cycles. On the other hand, the specific capacity decreases from 190 to 150 mAh g-1 with 79 % capacity retention for the spinel LiNi0.5Mn1.5O4. Also, LiNi0.33Mn0.54Co0.13O2 exhibited a stable specific capacity of about 170 mAh g-1 after 100 cycles when cycled in the potential range of 2.3-4.9 V. On the other hand, the specific capacity of LiNi0.33Mn0.33Co0.33O2 decreased from 208 mAh g-1 to a value of 130 mAh g-1 after only 50 cycles. The structural studies of cycled electrodes indicate that the spinel content in the active mass increases upon cycling due to structural layered-to-spinel transformation. However, the presence of untransformed Li2MnO3 in the active mass stabilizes the structure even after cycling in a wide potential range. These results indicate that neither layered nor spinel can be cycled in a too wide potential range while multiphase layered-spinel cathode materials can be cycled in a wide potential range with a stable high specific capacity in Li-ion batteries. Thus, the order of stability of these cathode materials can be presented as layered-spinel> spinel > layered.
References
- T. Ohzuku, Y. Makimura, Chem. Lett., 7, 642 (2001).
- H. Sclar, D. Kovacheva, E. Zhecheva, R. Stoyanova, R. Lavi, G. Kimmel, J. Grinblat, O. Girshevitz, F. Amalraj, O. Haik, E. Zinigrad, B. markovsky, D. Aurbach, J. Electrochem. Soc., 156, A938 (2009).
- S.K. Martha, H. Sclar, Z.S. Framowitz, D. Kovacheva, N. Saliyski, Y. Gofer, P. Sharon, E. Golik, B. Markovsky, D. Aurbach, J. Power Sources, 189, 248 (2009).
- X. Li, Y.J. Wei, H. Ehrenberg, F. Du, C.Z. Wang, G. Chen, Solid State Ionics, 178, 1969 (2008).
- P.K. Nayak, J. Grinblat, M. Levi, Y. Wu, B. Powell, D. Aurbach, J. Electroanal. Chem., 733, 6 (2014).
- Y. Xue, Z. Wang, F. Yu, Y. Zhang, G. Yin, J. Mater. Chem. A, 2, 4185 (2014).
- Y. Talyosef, B. Markovsky, G. Salitra, D. Aurbach, H.-J. Kim, S. Choi, J. Power Sources, 146, 664 (2005).
- M. Okubo, Y. Mizuno, H. Yamada, J. Kim, E. Hosono, H. Zhou, T. Kudo, I. Honma, ACS Nano, 4, 741 (2010).
- C.Y. Ouyang, S.Q. Shi, M.S. Lei, J. Alloys Compd., 474, 370 (2009).
- E.-S. Lee, A. Hug, H.-U. Chang, A. Manthiram, Chem. Mater., 24, 600 (2012).
- S.-H. Park, S.-H. Kang, C.S. Johnson, K. Amine, M.M. Thackeray, Electrochem. Commun., 9, 262 (2007).
- D. Luo, G. Li, C. Fu, J. Zheng, J. Fan, Q. Li, L. Li, Adv. Energy Mater., 4, 1400062 (2014).