1327
Re-Examination of the Particle Size Effect on the ORR for Nafion-Free Ultrathin Uniform Pt/C Catalyst Layers
Our previous studies12,13 have identified several artifacts that can influence the measured ORR activity and observed particle size effect in 0.1 M HClO4 in TF-RDE. They include: i) anion adsorption/blocking by Nafion ionomer incorporated in Pt/C catalyst films (but not for poly-Pt), ii) film thickness and uniformity—O2 diffusion within the catalyst film, iii) ORR activity measurement protocols, and, iv) impurity levels in the electrochemical system. We reported SA and MA for Pt/HSC and Pt/V using Nafion-free ultrathin uniform films fabricated using advanced techniques to be ~2.8x higher than that reported in the literature using conventional methods. The SA (0.9–1.1 mA/cm2Pt) for 2–4 nm Pt/C approaches 30–40% the SA of poly-Pt; these high activity values would certainly be expected to alter the particle size effect profile and provided the impetus for this work.
We conducted activity measurements for various catalysts having average Pt particle size in the range 2 nm to bulk poly-Pt. Our results indicate a much steeper increase in SA with particle size in the range 2–6 nm followed by a shallow increase for larger particles. We observe a MA peak around 3 nm and a profile that is in agreement with the theoretical model reported by Tritsaris et al.14 who attribute the effect to the proportion of terrace/step sites on particles with varying size.
Reference
1. L. J. Bregoli, Electrochim. Acta, 23, 489 (1978).
2. M. Peuckert, T. Yoneda, R. A. Dalla Betta, and M. Boudart, J. Electrochem. Soc., 133, 944 (1986).
3. H. A. Gasteiger, S. S. Kocha, B. Sompalli, and F. T. Wagner, Appl. Catal. B Environ., 56, 9 (2005).
4. K. J. J. Mayrhofer, D. Strmcnik, B. B. Blizanac, V. Stamenkovic, M. Arenz, and N. M. Markovic, Electrochim. Acta, 53, 3181 (2008).
5. J. Bett, J. Lundquist, E. Washington, and P. Stonehart, Electrochim. Acta, 18, 343 (1973).
6. H. Yano, E. Higuchi, H. Uchida, and M. Watanabe, J. Phys. Chem. B, 110, 16544 (2006).
7. Y. Takasu, N. Ohashi, X.-G. Zhang, Y. Murakami, H. Minagawa, S. Sato, and K. Yahikozawa, Electrochim. Acta, 41, 2595 (1996).
8. K. Kinoshita, J. Electrochem. Soc., 137, 845 (1990).
9. S. Mukerjee and J. McBreen, J. Electroanal. Chem., 448, 163 (1998).
10. E. Toyoda, R. Jinnouchi, T. Hatanaka, Y. Morimoto, K. Mitsuhara, A. Visikovskiy, and Y. Kido, J. Phys. Chem. C, 115, 21236 (2011).
11. M. Nesselberger, S. Ashton, J. C. Meier, I. Katsounaros, K. J. J. Mayrhofer, and M. Arenz, J. Am. Chem. Soc., 133, 17428 (2011).
12. S. S. Kocha, J. W. Zack, S. M. Alia, K. C. Neyerlin, and B. S. Pivovar, ECS Trans., 50, 1475 (2012).
13. K. Shinozaki, B. S. Pivovar, and S. S. Kocha, ECS Trans., 58, 15 (2013).
14. G. A. Tritsaris, J. Greeley, J. Rossmeisl, and J. K. Nørskov, Catal. Letters, 141, 909 (2011).