257
The Aprotic Li-O2 Battery: O2 Reduction Mechanism and Its Implications

Tuesday, October 13, 2015: 11:40
102-C (Phoenix Convention Center)
P. G. Bruce, L. Johnson (University of Oxford, Department of Materials), Y. Chen (University of Oxford, Department of Materials), Z. Liu (University of St Andrews), and S. A. Freunberger (Graz University of Technology)
Li-ion and related battery technologies will be important for years to come. However, society needs energy storage that exceeds the capacity of Li-ion batteries. We must explore alternatives to Li-ion if we are to have any hope of meeting the long-term needs for energy storage. One such alternative is the Li-air (O2) battery; its theoretical specific energy exceeds that of Li-ion, but many hurdles face its realization.1-5

One spin-off of the recent interest in rechargeable Li-O2 batteries, based on aprotic electrolytes is that it has highlighted the importance of understanding the fundamental electrochemistry at the positive electrode within the battery.6-15

The challenges of obtaining efficient, reversible charge and discharge are well documented in the field.  Here, we describe how our recent studies into the electrochemical mechanism of O2 reduction to form Li2O2 at the positive electrode might allow us to design new strategies to overcome these limitations.16 For example, exploiting the effect of solvent donor number, Fig. 1. We will describe our resent results using redox mediators17 to facilitate the electrochemistry along with the implications of the results for the future of rechargeable Li-O2 batteries.

References

(1) Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nature Materials 2012, 11, 19.

(2) Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Energy & Environmental Science 2013, 6, 750.

(3) Black, R.; Adams, B.; Nazar, L. F. Advanced Energy Materials 2012, 2, 801.

(4) Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. The Journal of Physical Chemistry Letters 2010, 1, 2193.

(5) Li, F.; Zhang, T.; Zhou, H. Energy & Environmental Science 2013, 6, 1125.

(6) Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Energy & Environmental Science 2013, 6, 1772.

(7) Horstmann, B.; Gallant, B.; Mitchell, R.; Bessler, W. G.; Shao-Horn, Y.; Bazant, M. Z. The Journal of Physical Chemistry Letters 2013, 4, 4217.

(8) Hummelshoj, J. S.; Luntz, A. C.; Norskov, J. K. The Journal of Chemical Physics 2013, 138, 034703.

(9) McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. The Journal of Physical Chemistry C 2012, 116, 23897.

(10) Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. The Journal of Physical Chemistry Letters 2013, 4, 1060.

(11) Trahan, M. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. Journal of The Electrochemical Society 2013, 160, A259.

(12) Sharon, D.; Etacheri, V.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. The Journal of Physical Chemistry Letters 2012, 4, 127.

(13) Jung, H. G.; Kim, H. S.; Park, J. B.; Oh, I. H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. K. Nano Letters 2012, 12, 4333.

(14) Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Angewandte Chemie International Edition 2011, 50, 6351.

(15) Zhai, D.; Wang, H. H.; Yang, J.; Lau, K. C.; Li, K.; Amine, K.; Curtiss, L. A. Journal of the American Chemical Society 2013, 135, 15364.

(16) Johnson, L.; Li, C. ; Liu, Z.; Chen, Y.; Freunberger, S. A.; Ashok, P.; Praveen, B.; Dholakia, K.; Tarascon, J-M.; Bruce, P. G. Nature Chemistry 2014, 6, 1091.

(17) Chen, Y.; Freunberger, S. A.; Peng, Z.; Fontaine, O.; Bruce, P. G. Nature Chemistry 2013, 5, 489.