260
A Biomolecular Eco-Friendly Catalyst for Lithium-Oxygen Batteries
In this presentation, we report the use of a common biomolecule as a soluble, eco-friendly catalyst to promote Li-O2 reactions with reduced overpotentials. We also elucidate the chemical reaction mechanism of its operation during oxide formation and evolution. In situ observations of chemical structure in the redox molecule are essential to establish the catalytic function and further design molecules for high performance Li-O2 battery systems. Here, we discuss the catalytic effects of the redox biomolecule on the significantly improved electrochemical characteristics of a practical Li-O2 battery.
1. D. G. Kwabi, N. Ortiz-Vitoriano, S. A. Freunberger, Y. Chen, N. Imanishi, P. G. Bruce and Y. Shao-Horn, Mrs Bull, 2014, 39, 443-452.
2. K. G. Gallagher, S. Goebel, T. Greszler, M. Mathias, W. Oelerich, D. Eroglu and V. Srinivasan, Energy & Environmental Science, 2014, 7, 1555-1563.
3. W. H. Ryu, F. S. Gittleson, M. Schwab, T. Goh and A. D. Taylor, Nano Lett, 2015, 15, 434-441.
4. W. H. Ryu, T. H. Yoon, S. H. Song, S. Jeon, Y. J. Park and I. D. Kim, Nano Lett, 2013, 13, 4190-4197.
5. F. S. Gittleson, W. H. Ryu and A. D. Taylor, ACS Appl Mater Interfaces, 2014, 6, 19017-19025.
6. Y. H. Chen, S. A. Freunberger, Z. Q. Peng, O. Fontaine and P. G. Bruce, Nat Chem, 2013, 5, 489-494.
7. H. D. Lim, H. Song, J. Kim, H. Gwon, Y. Bae, K. Y. Park, J. Hong, H. Kim, T. Kim, Y. H. Kim, X. Lepro, R. Ovalle-Robles, R. H. Baughman and K. Kang, Angew Chem Int Edit, 2014, 53, 3926-3931.
8. B. J. Bergner, A. Schurmann, K. Peppler, A. Garsuch and J. Janek, J Am Chem Soc, 2014, 136, 15054-15064.
9. D. Sun, Y. Shen, W. Zhang, L. Yu, Z. Q. Yi, W. Yin, D. Wang, Y. H. Huang, J. Wang, D. L. Wang and J. B. Goodenough, Journal of the American Chemical Society, 2014, 136, 8941-8946.