To alleviate such complex question, we designed OER catalysts with the perovskite structure that contain a sacrificial alkaline cation that can be selectively leached out from the perovskite structure at a given potential. This selective leaching not only allows for the modification of the electronic structure of the catalyst by oxidizing the transition metal, but we also demonstrate that it governs the surface reconstruction, both effects leading to the formation of a new surface with greater OER activity than the state-of-the-art IrO2 catalyst. The effect of the electrochemical leaching/activation was studied by employing HRTEM coupled with XAS measurements, allowing for the determination of the crystal and electronic structures of the new surface. Combining these measurements with DFT calculations unlocked the fundamental understanding of the mechanism at play, and more precisely the activation of the lattice oxygen reactivity and its participation to the oxidation process.
(1) Hong, W.; Risch, M.; Stoerzinger, K. a; Grimaud, A. J. L.; Suntivich, J.; Shao-Horn, Y. Energy Environ. Sci. 2015, 8, 1404–1427.
(2) Grimaud, A.; May, K. J.; Carlton, C. E.; Lee, Y.-L.; Risch, M.; Hong, W. T.; Zhou, J.; Shao-Horn, Y. Nat. Commun. 2013, 4, 2439.
(3) May, K. J.; Carlton, C. E.; Stoerzinger, K. a.; Risch, M.; Suntivich, J.; Lee, Y.; Grimaud, A.; Shao-Horn, Y. J. Phys. Chem. Lett. 2012, 3, 3264–3270.
(4) Chen, C.; Kang, Y.; Huo, Z.; Zhu, Z.; Huang, W.; Xin, H. L.; Snyder, J. D.; Li, D.; Herron, J. A.; Mavrikakis, M.; Chi, M.; More, K. L.; Li, Y.; Markovic, N. M.; Somorjai, G. A.; Yang, P.; Stamenkovic, V. R. Science (80-. ). 2014, 343, 1339–1344.
(5) Gan, L.; Cui, C.; Heggen, M.; Dionigi, F.; Rudi, S.; Strasser, P. Science 2014, 346, 1502–1506.
(6) Bediako, D. K.; Surendranath, Y.; Nocera, D. G. J. Am. Chem. Soc. 2013, 135, 3662–3674.
(7) Mavros, M. G.; Tsuchimochi, T.; Kowalczyk, T.; Mcisaac, A.; Wang, L.; Voorhis, T. Van. Inorg. Chem. 2014, 53, 6386–6397.