1. Whipple, D.T. and P.J.A. Kenis, Prospects of CO2 Utilization via Direct Heterogeneous Electrochemical Reduction. The Journal of Physical Chemistry Letters, 2010. 1(24): p. 3451-3458.
2. Nørskov, J.K., et al., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. J. Phys. Chem. B, 2004. 108(46): p. 17886--17892.
3. Shi, C., et al., Chan, K., Yoo, J., Nørskov, J.K. Trends in electrochemical CO2 reduction activity for open and close-packed metal surfaces. Physical Chemistry Chemical Physics, 2014. 16(10): p. 4720-4727.
4. Kuhl, K.P., et al., Electrocatalytic Conversion of Carbon Dioxide to Methane and Methanol on Transition Metal Surfaces.Journal of the American Chemical Society, 2014.
5. Chan, K., et al., Molybdenum Sulfides and Selenides as Possible Electrocatalysts for CO2 Reduction. ChemCatChem, 2014. 6(7): p. 1899-1905.
6. Asadi, M., et al., Robust carbon dioxide reduction on molybdenum disulphide edges. Nature communications, 2014. 5.
7. Chan, K. and J.K. Nørskov, Electrochemical Barriers Made Simple.J. Phys. Chem. Lett., 2015: p. 2663--2668.
8. Chan, K. and J.K. Nørskov, Potential Dependence of Electrochemical Barriers from ab Initio Calculations.The Journal of Physical Chemistry Letters, 2016: p. 1686-1690.
9. Montoya, J.H., et al., Theoretical Insights into a CO Dimerization Mechanism in CO2 Electroreduction. The journal of physical chemistry letters, 2015. 6(11): p. 2032--2037.
10. Chen, L.D., Urushihara, M., Chan, K., Nørskov, J.K. Electric Field Effects in Electrochemical CO2 Reduction.ACS Catalysis, 2016.
11. Liu, X., Xiao, J., Peng, H., Hong, X., Chan, K., Nørskov, J.K. Understanding trends in CO2 reduction on transition metals. Nature Communications, 2017.