Thin film techniques permits to grow the catalyst film characterized by highly dispersed platinum [2] showing high hydrogen oxidation activity and stability. These new materials may help to substantially reduce the demand for expensive noble-metals in proton exchange membrane fuel cell (PEMFC) catalytic applications.
We prepared 50 cm2 MEAs with 6 μg Pt/cm2 anode and 300 μg Pt/cm2 cathode catalysts. The MEAs activity were measured in 10 cell hydrogen/air water cooled PEMFC stack, developed in our laboratory. Efficiency measurements performed at different pressures, temperatures, and hydrogen flow conditions were compared with performance of standard reference MEAs. We showed that MEAs made by assembling thin film Pt-CeOx/CNx anodes, containing 6 μg Pt per 1 cm2 only, and reference cathodes can be used for fabrication of state of the art low Pt content PEMFC stacks delivering high specific power. It is shown that the almost Pt free anode technology represents promising solution for future fabrication of PEMFC stacks using Pt free cathodes under development.
Reference
[1] Fiala, R; Figueroba, A; Bruix, A; Vaclavu, M; Rednyk, A; Khalakhan, I; Vorokhta, M; Lavkova, J; Illas, F; Potin, V; Matolinova, I; Neyman, KM; Matolin, V, High efficiency of Pt2+- CeO2 novel thin film catalyst as anode for proton exchange membrane fuel cells, Appl. Catal. B-Environ., 197 : 262–270, 2016.
[2] Dvorak, F; Camellone, MF; Tovt, A; Tran, N-D; Negreiros, FR; Vorokhta, M; Skala, T; Matolinova, I; Myslivecek, J; Matolin, V; Fabris, S, Creating single-atom Pt-ceria catalysts by surface step decoration, Nat. Commun., 7 (Feb): Art. No. 10801, 2016.