The aim of this work is to understand the chemical and electrochemical interaction mechanisms of MRB with steel surfaces by combining electrochemistry and surface-analytical techniques. The investigations primarily focus on the effect of pre-adsorbed thin organic films and self-assembled monolayers (SAMs) on the electron transfer processes between bacteria and steel surfaces. Electrochemical Quartz Crystal Microbalance (eQCM) studies have been performed to investigate the adsorption/desorption kinetics of organic films as well as the formation of biofilms on FeCr electrodes. Furthermore, the evolution of the biofilms on steel surfaces has been analyzed by means of electrochemical impedance spectroscopy (EIS) to support the QCM studies with information on structural changes during different stages of biofilm growth. Electron transfer and corrosion processes have been analyzed by means of square wave voltammetry (SWV) and linear sweep voltammetry (LSV), respectively. The results of electrochemical studies are complemented with microscopic and spectroscopic characterisation of organic adsorbates and analysis of changes in the passive film chemistry and surface morphology.
This presentation will summarize our results on the chemical and electrochemical interaction mechanisms of MRB on steel surfaces leading to passive film degradation. The role of flavins in accelerating corrosion processes will be elucidated in detail to provide useful insights from a fundamental aspect for the understanding of the initial stages of microbiologically influenced corrosion in the presence of MRB.