Aiming at this, we cycled the lithium-rich layered oxide, x Li2MnO3∙(1-x) LiNiaCobMncO2 (a+b+c=1), versus metallic lithium at a low C-rate of C/5 (50 mA g-1) at the Long-Duration-Experiment facility of Beamline I11 at Diamond Light Source11 using a custom-made pouch cell design. We collected XRD patterns every week, alternatingly in the charged and discharged state, from several cells at an interval of 15 cycles per week (more than 7 weeks in total). On the collected long-term synchrotron in situ data we performed Rietveld analysis and detected an imbalanced electron density in difference Fourier mapping, using an ordered model structure. We quantified the transition metal migration upon cycling (i. e., the transition metal disorder) by detailed reflection profile analysis. Our data demonstrate experimentally for the first time that the transition metal migration in lithium-rich layered oxides proceeds upon cycling from the octahedral transition metal sites (Figure 1A) via tetrahedral sites in the lithium layer (Figure 1B) into octahedral lithium sites (Figure 1C). Such migration is irreversible (at least partially) and it is correlated to the irreversible discharge voltage fade. From the collected XRD data, we cannot conclude if the origin of the voltage fade is thermodynamic or kinetic, but various hypotheses will be discussed. Furthermore, a comparison with other layered metal oxides will be performed.
Acknowledgement: We want to acknowledge BASF SE for the support within the frame of its scientific network on electrochemistry and batteries.
- D. Andre, S.-J. Kim, P. Lamp, S. F. Lux, F. Maglia, O. Paschos and B. Stiaszny, J. Mater. Chem. A, 3, 6709–6732 (2015).
- . R. Croy, K. G. Gallagher, M. Balasubramanian, Z. Chen, Y. Ren, D. Kim, S.-H. Kang, D. W. Dees and M. M. Thackeray , J. Phys. Chem. C, 117, 6525–6536 (2013).
- Z. Q. Deng and A. Manthiram, J. Phys. Chem. C, 115, 7097–7103 (2011).
- P. Rozier and J. M. Tarascon, J. Electrochem. Soc., 162, A2490–A2499 (2015).
- F. La Mantia, F. Rosciano, N. Tran, and P. Novák, J. Appl. Electrochem., 38, 893–896 (2008).
- A. R. Armstrong, M. Holzapfel, P. Novák, C. S. Johnson, S.-H. Kang, M. M. Thackeray, and P. G. Bruce, J. Am. Chem. Soc., 128, 8694–8698 (2006).
- B. Strehle, K. Kleiner, R. Jung, F. Chesneau, M. Mendez, H. A. Gasteiger, and M. Piana, J. Electrochem. Soc., 164, A400–A406 (2017).
- C. Genevois, H. Koga, L. Croguennec, M. Ménétrier, C. Delmas, and F. Weill, J. Phys. Chem. C, 119, 75–83 (2015).
- J. Hong, H. Gwon, S.-K. Jung, K. Ku, and K. Kang, J. Electrochem. Soc., 162, A2447–A2467 (2015).
- J. Bréger, M. Jiang, N. Dupré, Y. S. Meng, Y. Shao-Horn, G. Ceder, C. P. Grey, J. Solid State Chem., 178, 2575–2585 (2005).
- C. A. Murray, J. Potter, S. J. Day, A. R. Baker, S. P. Thompson, J. Kelly, C. G. Morris, S. Yang and C. C. Tang, J. Appl. Cryst. 50, 172–183 (2017).