Monday, 14 May 2018: 15:30
Room 212 (Washington State Convention Center)
Transparent electronic devices built on flexible substrates are expected to meet emerging technological demands for the next generation of flexible electronic and optoelectronic devices. A suitable energy source is a vital part for realizing fully self-powered systems. Energy harvesting and conversion technology from environment in which the system will be deployed is a promising route. Recently, we have introduced a new concept
on the basis of triboelectrification and electrostatic induction for successfully converting mechanical energy into electric energy at an energy conversion efficiency as high as 50%. Subsequently, transparent triboelectric nanogenerators (TENGs) using indium tin oxide (ITO) or graphene as electrodes have been demonstrated, which are the only possible power source that light can penetrate through. However, there is a need for a low-cost and large area compatible technology for producing transparent TENGs with high-output power supply, aiming for applications
such as touch screens.
In our previous work, we fabricated a transparent TENG and pressure sensor by using polyester (PET) and polydimethylsiloxane (PDMS) films as flexible substrates to integrate ITO electrodes. It has also been demonstrated that the patterned surface is an effective method to improve the output performance of the TENG. However, realizing such a structure is not trivial in mass production and the patterned structure will reduce the transparency of the device due to the light scattering effect. Here, we present a simple, cost-effective and large-scalable method for fabrication of highly transparent TENGs.
Although triboelectric effect has been known for thousands years, the underlying mechanism is actually very complex and still under debating. The competing possible mechanisms appear to include electron transfer, ion transfer, bond dissociation, chemical changes, and material transfer, and it is likely that different mechanisms may be involved depending on the specific materials and environmental conditions. Usually, it needs specialized equipment to characterize the charged surface and study the mechanism. It is worth noting that the output performance of TENG can directly reflect the capacity of the triboelectrification. Herein, we use this feature to investigate the mechanism of the triboelectrification by examining various factors on the performance of TENG.
Furthermore, another meaningful outcome of our study is that we explore the mechanism from the microscopic and molecular perspective using the methods for surface characterization, which would be beneficial to the improvementand application of TENG at a large scale.
References
F. R. Fan, Z. Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328-334.
F. R. Fan, L. Lin, G. Zhu, W. Z. Wu, R. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 3109-3114.
F. R. Fan, J. J. Luo, W. Tang, C. Y. Li, C. P. Zhang, Z. Q. Tian, Z. L. Wang, J. Mater. Chem. A 2014, 2, 13219-13225.
on the basis of triboelectrification and electrostatic induction for successfully converting mechanical energy into electric energy at an energy conversion efficiency as high as 50%. Subsequently, transparent triboelectric nanogenerators (TENGs) using indium tin oxide (ITO) or graphene as electrodes have been demonstrated, which are the only possible power source that light can penetrate through. However, there is a need for a low-cost and large area compatible technology for producing transparent TENGs with high-output power supply, aiming for applications
such as touch screens.
In our previous work, we fabricated a transparent TENG and pressure sensor by using polyester (PET) and polydimethylsiloxane (PDMS) films as flexible substrates to integrate ITO electrodes. It has also been demonstrated that the patterned surface is an effective method to improve the output performance of the TENG. However, realizing such a structure is not trivial in mass production and the patterned structure will reduce the transparency of the device due to the light scattering effect. Here, we present a simple, cost-effective and large-scalable method for fabrication of highly transparent TENGs.
Although triboelectric effect has been known for thousands years, the underlying mechanism is actually very complex and still under debating. The competing possible mechanisms appear to include electron transfer, ion transfer, bond dissociation, chemical changes, and material transfer, and it is likely that different mechanisms may be involved depending on the specific materials and environmental conditions. Usually, it needs specialized equipment to characterize the charged surface and study the mechanism. It is worth noting that the output performance of TENG can directly reflect the capacity of the triboelectrification. Herein, we use this feature to investigate the mechanism of the triboelectrification by examining various factors on the performance of TENG.
Furthermore, another meaningful outcome of our study is that we explore the mechanism from the microscopic and molecular perspective using the methods for surface characterization, which would be beneficial to the improvementand application of TENG at a large scale.
References
F. R. Fan, Z. Q. Tian, Z. L. Wang, Nano Energy 2012, 1, 328-334.
F. R. Fan, L. Lin, G. Zhu, W. Z. Wu, R. Zhang, Z. L. Wang, Nano Lett. 2012, 12, 3109-3114.
F. R. Fan, J. J. Luo, W. Tang, C. Y. Li, C. P. Zhang, Z. Q. Tian, Z. L. Wang, J. Mater. Chem. A 2014, 2, 13219-13225.