Herein, we developed hierarchical nanostructured Sn, Bi, and Zn electrodes as electrocatalysts for CO2 reduction to C1 products (e.g., formic acid/formate and carbon monoxide). Various structured catalysts such as Sn dendrite, Bi dendrite, and hexagonal Zn were fabricated by facile electrodeposition methods. The synthesized catalyst electrodes showed highly efficient CO2 reduction activity in terms of current density, Faradaic efficiency, and more importantly, stable performance during long-term operation. Sn dendrite and Bi dendrite electrodes exhibited a superior formate/formic acid production rates (Sn dendrite: 228.6 mmol h-1 cm-2 at -1.36 VRHE) and high Faradaic efficiency (Bi dendrite: 90% at -0.73 VRHE) without any considerable catalytic degradation during 18 h and 12 h of long-term operations, respectively. Furthermore, the hexagonal Zn catalyst showed a high CO selectivity up to ~95% during unprecedented long-time over 30 h. It is worth noted that their high selectivity towards CO2 reduction is attributed to their local (or chemical) structures. In case of Sn electrode, we found that the native O content on the Sn surface is strongly correlated with the stabilization of reaction intermediate and the formate selectivity. To understand in-depth the factors to affect the CO2 reduction, we further conducted the theoretical studies about the mechanism of CO2 conversion to formic acid on various Bi planes such as close-packed and high-index surfaces using density functional theory calculation (DFT). We demonstrated that the most energetically favorable pathway was a path through the formation of oxygen bidentate intermediate (*OCOH) among the three possible pathways for formic acid formation. In addition, it was also revealed that the high-index Bi surfaces exhibited the lower reduction potential than the closed-packed surface of (003) plane. Similarly, in electrochemical analysis using Zn electrodes, it was figured out that Zn (101) facet was favorable to CO formation whereas Zn (002) facet, most stable surface, favors the H2 evolution during CO2 electrolysis. Indeed, DFT calculations showed that Zn (101) facet lowers the reduction potential for CO2 to CO by more effectively stabilizing a *COOH intermediate than Zn (002) facet. Consequently, the coordinately unsaturated sites derived from the nanostructured non-noble metal catalysts can effectively stabilize the reaction intermediate by lowering the energy barrier for its binding to the site. These results may suggest a design principle for further developments in other advanced catalysts as well as in CO2 reduction.