1076
Corrosion Characteristics and Workability of Cold Rolled Ti-4Mo-X (1, 2, 3, 4 Cr or V) Ternary Alloys

Tuesday, 15 May 2018
Ballroom 6ABC (Washington State Convention Center)

ABSTRACT WITHDRAWN

The beta phase stability of titanium alloys can be generally described by means of molybdenum equivalence (Moeq). In this study, Ti-4Mo-X (1, 2, 3, 4 wt.% Cr or V) alloys were prepared by means of vacuum arc remelting under argon atmosphere in order to enhance the workability of Ti-4Mo-X alloys and corrosion resistance. The corrosion properties, microstructural evolution and plastic workability were investigated following uniaxial cold rolling. The corrosion evaluation was conducted in a standard three-electrode cells in naturally aerated Ringer’s physiological solution at 37±1 ℃. Optical micrograph showed an increase of acicular β phases after cold rolling. XRD results showed a higher intensity of β phase in the cold rolled specimen compared to as-homogenized one. The formation of β phase was responsible for the improved workability of Ti alloys. The maximum reduction ratio of the cold rolled specimens without any presence of cracks were 72.8% and 39.4% for Ti-4Mo-4Cr and Ti-4Mo-4V alloys, respectively. The corrosion properties of the alloy were relatively dependent on the cold rolling. Ti-4Mo-4Cr alloy showed the lowest corrosion current density with 6.71E10-9/cm2.