On this basis we investigated the nature of the electronic structure of electrochemically formed iridium oxide films (EIROF) by in-situ conductivity measurements in an electrochemical cells and ex-situ current-sensing atomic force microscopy (CS-AFM). A direct demonstration of changes in the conductivity for electrochemically formed iridium oxide films (EIROF) with the applied potential of EIROF electrodes in an electrochemical cell is presented. The in-situ conductivity shows a single step-like change at a potential of approximately 1.2 V vs. a reversible hydrogen reference electrode in a solution of 0.5 mol dm-3 H2SO4. The in-situ conductivity measurements are shown in Fig. 1 along with a cyclic voltammogram.
The change in conductivity is also reflected in results of ex-situ current-sensing atomic-force microscopy (CS-AFM) for EIROF electrodes emersed at different potentials. At an emersion potential of 0 V the CS-AFM current-voltage characteristics is non-linear and similar to those of diodes. At an emersion potential of 1.6 V the CS-AFM current-voltage characteristics were approximately linear, consistent with metallic behavior. Mott-Schottky analysis, included in Fig. 1, shows that at low potentials the oxide behaves as a p-type semiconductor with a flatband potential approximately 500 mV below the transition to high conductivity from the in-situ conductivity measurements. These results allows for an interpretation of changes in the relative magnitudes of the III/IV and IV/V (or IV/VI) voltammetric peaks during film growth through a block-release behavior involving space-charge layers in the oxide.
References
[1] C. Bock and V. I. Birss, J. Electrochem. Soc., 146, 1766 (1999).
[2] S. Gottesfeld and J.D.E. McIntyre, J. Electrochem. Soc., 126 742 (1979).
[3] C. G. Granqvist, Sol. Energy Mater. Sol. Cells, 32, 369 (1994).
[4] C. G. Granqvist, Thin Solid Films, 564, 1 (2014).
[5] S. Gottesfeld and S. Srinivasan, J. Electroanal. Chem., 86, 89 (1978).
[6] Ch. Comninellis and G. P. Vercesi, J. Appl. Electrochem., 21, 335 (1991).
[7] L. Ouattara, S. Fierro, O. Frey, M. Koudelka, C. Comninellis, J. Appl. Electrochem., 39, 1361 (2009).
[8] S. Trasatti, Interfacial Electrochemistry, A. Wieckowski, Editor, p. 769, Marcel Dekker, New York (1999)
[9] S. Trasatti, Electrochimica Acta, 36, 225 (1991).
[10] S. Trasatti, Mater. Chem. Phys., 16, 157 (1987).
[11] S. Trasatti, Electrochimica Acta, 29, 1503 (1984).
[12] S. Trasatti, J. Electroanal. Chem., 111, 125 (1980).
[13] R. G. Haverkamp, A. T. Marshall and B. C. C. Cowie, Surf. Interface Anal., 43 847 (2011).
[14] A. Marshall, B. Brresen, G. Hagen, S. Sunde, M. Tsypkin and R. Tunold, Russ. J. Electrochem., 42 1134 (2006).
[15] A. Marshall, S. Sunde, M. Tsypkin and R. Tunold, Int. J. Hydrogen Energy, 32 2320 (2007).
[16] R. Tunold, A. T. Marshall, E. Rasten, M. Tsypkin, L.-E. Owe and S. Sunde, ECS Transactions, 25, 103 (2010).
[17] I. A. Lervik, M. Tsypkin, L.-E. Owe and S. Sunde, J. Electroanal. Chem., 645, 135 (2010).
[18] L.-E. Owe, I. A. Lervik, M. Tsypkin, M. V. Syre and S. Sunde, J. Electrochem. Soc., 157, B1719 (2010).
[19] S. Sunde, I. A. Lervik, M. Tsypkin and L.-E. Owe, Electrochimica Acta, 55 7751 (2010).
[20] P. Steegstra and E. Ahlberg, J. Electroanal. Chem., 685, 1 (2012).
[21] V. I. Birss, C. Bock and H. Elzanowska, Can. J. Chem., 75, 1687 (1997).
Captions
Fig. 1. Conductivity under potential control collected for an EIROF on a gold substrate. The figure includes a Mott-Schottky plot and a voltammogram for a film on carbon support collected at a sweep rate of 5 mV s-1.