In this work, we demonstrate reversible plating and stripping of dendrite-free metallic-lithium with a reduced anode/PCSE interfacial resistance by introducing a thin interfacial layer formed by heating. First, the PCSE which has an ionic conductivity of ~ 10-4 S/cm at room temperature, was synthesized by mechanical milling, and characterized using NMR, DSC, IR spectroscopy, and Raman spectroscopy. Next, the PCSE was tested in symmetric cells for electrochemical impedance spectroscopy and cycling. To address the high solid-solid interfacial resistance and short-circuiting dendrite problems, we demonstrate a simple strategy to engineer the lithium-PCSE interface by forming an in-situ interlayer via a heat treatment. The area specific resistance of 573.6 Ω/cm2 has been successfully achieved with a 0.9 mm thickness pellet under a current density of 0.1 mA/cm2. These results provide a promising PCSE membrane that can be applied to lithium metal battery and other energy storage application, such as lithium sulfur batteries.