In this study, we report the self-organized formation of anodic molybdenum oxide nanotube arrays.5 The amorphous tubes can be crystallized to MoO2 or MoO3 and be converted fully or partially into molybdenum sulfide. Vertically aligned MoOx/MoS2 nanotubes can be formed with defined MoS2 sheets in a layer by layer arrangement. These provide a high density of reactive stacking misalignments (defects). These core–shell nanotube arrays consist of a conductive suboxide core and a functional high defect density MoS2 coating. Such structures are investigated for applications in electrocatalysis (hydrogen evolution).
Furthermore, nanoscaled MoS2 has a gap broadens up to 1.8 eV when reaching monolayer thickness with a conduction band more negative to the conduction band of TiO2. In our experiments, MoS2 can be decorated on the top of anodic anatase TiO2 nanotubes (TiNTs) site-selectively. 6 The layers can be used as co-catalysts for photocatalytic hydrogen evolution. A strongly enhanced H2 evolution activity can be observed using only a nominal 1 nm thick MoS2 decoration on top of a 6 μm thick TiNT layer. We ascribe this strong beneficial effect to two factors: (i) the thin molybdenum sulfide on the top acts as an electron transfer mediator, i.e. as an H2 evolution co-catalyst; and (ii) the underlying tube layer acts as a light-to-electron harvester.
References
- 1. a) Y. Yan, B. Y. Xia, Z. Xu, X. Wang, ACS Catal. 2014, 4, 1693 –1705; b) J. D. Benck, T. R. Hellstern, J. Kibsgaard, P. Chakthranont,T. F. Jaramillo, ACS Catal. 2014, 4, 3957 – 3971; c) X.Huang, Z. Zeng, H. Zhang, Chem. Soc. Rev. 2013, 42, 1934 –1946; d) X. Hu,W. Zhang, X. Liu, Y. Mei, Y. Huang, Chem. Soc.Rev. 2015, 44, 2376 – 2404.
- a) H. I. Karunadasa, E. Montalvo, Y. Sun, M. Majda, J. R. Long, C. J. Chang, Science 2012, 335, 698 – 702; b) T. Wang, L. Liu, Z. Zhu, P. Papakonstantinou, J. Hu, H. Liu, M. Li, Energy Environ. Sci. 2013, 6, 625 – 633; c) J. Kibsgaard, Z. Chen, B. N. Reinecke, T. F. Jaramillo, Nat. Mater. 2012, 11, 963 – 969.
- a) Y. Feldman, E. Wasserman, D. J. Srolovitz, R. Tenne, Science 1995, 267, 222 – 225; b) R. Tenne, Nat. Nanotechnol. 2006, 1, 103 – 111.
- Q. H. Wang, K. Kalantar-Zadeh, A. Kis, J. N. Coleman, M. S. Strano, Nat. Nanotechnol. 2012, 7, 699 – 712.
- B. Jin, X. Zhou, L. Huang, M. Licklederer, M. Yang, and P. Schmuki, Angew. Chem. Int. Ed., 2016, 55, 12252–12256.
- X. Zhou, M. Licklederer, P. Schmuki, Electrochem. Commun., 2016, 73, 33–37.