For most common structural alloys, chromium has the most stable chloride, and thus selective dissolution of chromium from the alloy into the salt is the dominant form of material degradation in molten halides. While this fact is well known and backed-up by experimental data, the mechanism of chromium depletion from alloys is not yet known. To truly understand corrosion in molten salts, the mechanism of chromium depletion from alloys must be understood and quantified.
This talk will discuss results of a combined experimental and computational strategy aimed at fundamentally understanding corrosion of alloys in molten chloride salts. Controlled capsule tests are conducted in which model Ni-Cr alloys are exposed to molten KCl-MgCl2 at temperatures in excess of 600°C to measure degradation in molten salt. In an effort to maintain greater control of the molten salt environment, new processes to sufficiently purify salts are discussed. Quantification of salt impurities is matched to corrosion results in an effort to quantify the effect of salt impurity concentrations on corrosion rates. Traditional experimentation is coupled with x-ray spectroscopy and thermodynamic modeling to identify relevant reactions and to develop a thermodynamic description of the alloy-salt system.
This work is funded by the Laboratory Directed Research and Development Fund at Oak Ridge National Laboratory.