Monday, 14 May 2018: 08:30
Room 602 (Washington State Convention Center)
The progress in the ORR electrocatalysis over the last two decades has been achieved primarily through the fundamental understanding of processes that are taking place at well-defined surfaces. True nature of active sites is an important topic in the literature, however, despite decades of persistent studies aimed to reveal the fundamentals, insight at atomic level is still lacking. Properties such as surface crystallographic orientation, morphology, composition and defects are yet to be assigned to the correlation between the atomic structure and catalyst activity. For the first time, we report on the atomic structure that has been investigated in combination with durability. The ultimate precision that goes beyond a part per million of a single atomic layer has been achieved in determining electrocatalytic properties of the ORR catalysts. Obtained knowledge is of paramount importance in design of advanced highly functional nanoscale materials. Single crystalline and thin film based surfaces of Pt-alloys have been characterized by AES, LEED and UPS, which was followed by controlled transfer to electrochemical, in-situ FTIR and STM cells. These findings have been further used to optimize a unique RDE coupled ICP-MS system. Such effort has led towards the design and synthesis of real-world materials with superior properties that will be reported here.