In the present study, the effect of cell orientation on battery ageing and degradation has been investigated that can have an impact on the life of a battery in second-life applications. Eight large-size pouch batteries from two differently orientated modules from a dismantled first-generation Nissan Leaf retired battery pack have been analysed utilising infrared (IR) thermography and electrochemical impedance spectroscopy (EIS) techniques along with a brand-new second-generation Nissan Leaf battery which has almost the same geometry as batteries from the retired pack. Temperature derivative maps over the battery surface during discharging have been analysed, which show a direct correlation with the battery’s heat generation rates. Obtained results show that the thermal behaviour of brand-new batteries in orientations mimicking aged battery's orientation in the pack during EV life are very similar showing that the temperature derivative map’s hot spot is more towards the edge opposite to gravity vector (Figure 1 left). Also, EIS results (RCT+RSEI, charge transfer and solid electrolyte interphase layer resistances) show a wider range over SoCs for rotated-aged than flat-aged cells (Figure 1 right). It is worth noting that cells aged in flat orientation retained higher capacity compared to the cells aged in rotated orientation. These results show that different LiB orientations in EV batteries cause ageing non-uniformities over the battery surface, which would impact their second-life applications [4]. Non-uniform ageing is found to be more pronounced for the rotated module compared with the flat orientation inside the battery pack (Figure 1). Based on the present results, it is clear that avoiding different orientations in the battery pack can be a sustainable design for future EV battery back if reusing of spent EV batteries is envisaged.
This work was part of the ReLiB project (https://relib.org.uk) and was supported by the Faraday Institution (https://www.faraday.ac.uk; grant numbers FIRG005 and FIRG027).
References
[1] ReLiB: Reuse and Recycling of Lithium-ion Batteries, accessed 12 December 2021, <https://relib1.relib.org.uk>.
[2] P.S. Attidekou, Z. Milojevic, M. Muhammad, M. Ahmeid, S. Lambert, P.K. Das, “Methodologies for large-size pouch lithium-ion batteries end-of-life gateway detection in the second-life application,” Journal of the Electrochemical Society, vol. 167, pp. 160534, 2020, DOI: 10.1149/1945-7111/abd1f1.
[3] M. Muhammad, M. Ahmeid, P. Attidekou, Z. Milojevic, S. Lambert, P. Das, “Assessment of spent EV batteries for second-life application”, 2019 IEEE 4th International Future Energy Electronics Conference (IFEEC), IEEE, pp. 1-5, 2019, DOI: 10.1109/IFEEC47410.2019.9015015.
[4] Z. Milojevic, P.S. Attidekou, M. Muhammad, M. Ahmeid, S. Lambert, P.K. Das, “Influence of orientation on ageing of large-size pouch lithium-ion batteries during electric vehicle life,” Journal of Power Sources, vol. 506, pp. 230242, 2021, DOI: 10.1016/j.jpowsour.2021.230242