In this experiment, we attempted to separate only the effects of active materials while minimizing the influence of the electrode density, which affects the mass transfer in the porous electrode. For this purpose, two electrodes consisting of small and large particles are placed in one pouch cell and connected in parallel with Li metal as a counter electrode. By measuring the current flowing through each electrode individually, we observed how small and large particles work in mixed electrode.
Since the influence of mass transfer inside the electrode was minimized, it was assumed that the mass transfer did not affect the currents divided into each electrode. Thus, current flowing to each electrode is determined by the relative contributions of charge transfer and solid diffusion kinetics. Large particles have smaller charge transfer resistance and slower solid diffusion than small particles. If rate-liming step is charge transfer, more currents flow to large particles by small charge transfer resistance. If rate-limiting step is solid diffusion, more currents flow to small particles due to the fast diffusion in active materials. Through this experiment, we could analyze the behavior of active materials having different particle sizes in mixed electrode by detecting the current respectively.