One of the main disadvantages of using ionic liquids in electrochemistry is their high viscosity, which hinders the diffusion of the electroactive species towards the electrode surface and thus, lowering the reaction rates. This has triggered the study of low viscosity ionic liquids, which are usually those based on the imidazole cation ([Im+]) and/or the bis(trifluoromethyl)sulfonyl imide anion ([NTf2‑]). It should be noted that the ionic liquid-electrode interphase is more complex than one in an aqueous medium. Ionic liquids have a higher electrostatic charge and interaction between the ions, which complicates the application of simple double-layer models. It is also important to highlight that, being organic compounds, they are prone to have impurities related to their synthesis processes, which can affect their physicochemical properties. In electrochemical systems in which ionic liquids are used, these liquids play the role of both solvent and electrolyte, which complicates the study of interactions, since the concentration of the ions is very high. To simplify the problem and to have a system with which to compare, ionic liquids can be dissolved in water. In this case, the concentration of the ions is reduced, facilitating their study. In addition, models are available to study and analyze their behavior. Thus, it is possible to analyze the effect of the concentration of the ionic liquid on its behavior and to extrapolate it to concentrations in which water is absent. In addition, due to the high hygroscopicity of ionic liquids, it is very difficult to completely eliminate water in practical applications. Furthermore, the presence of ionic liquids in aqueous solutions has been shown to catalyze some electrochemical reactions where small amounts of these have been shown to significantly increase the reaction rate. Thus, the aim of this work is to characterize the electrochemical behavior in water of the different ions that form the ionic liquids based in [Im]+ cation and ([NTf2]-) anion separately on platinum single crystal electrodes. To determine the role of each ion, different salts composed with at least one of the ions of interest ([Im]+ or ([NTf2]-)) will be used. The interactions of the ions and the electrode will be characterized using electrochemical and spectroelectrochemical techniques.