In this study we explore the conversion of free-standing arrays Cu nanowires with controlled diameter and length synthesized by electrodeposition in etched ion-track membranes into HKUST-1. In a first process step, free-standing Cu wires are produced by dissolving the ion-track polymer template. In a second step, the wires are converted into HKUST-1 structures by electrochemical oxidation. Applying 2.5 V versus a Cu counter electrode, the Cu nanowires are oxidatively dissolved and the MOF is built up as the as-formed Cu2+ ions bind to the BTC3− ligands in the electrolyte solution. The morphology and crystallinity of the samples at different transformation stages is investigated by scanning electron microscopy (Fig. 1) and transmission electron microscopy, respectively. X-ray diffraction spectra measured at different conversion times reveal the appearance of the characteristic reflections of HKUST-1. These results will be compared with previous studies of the transformation of Cu nanowires to HKUST-1 nanowires inside the polymer membrane [4].
Figure 1: SEM images of cylindrical Cu nanowires (a) before and (b) during the electrochemical conversion process, and (c) of a representative octahedral particle after complete conversion to HKUST-1.
References
[1] Freund R, Canossa S, Cohen SM, Yan W, Deng et al. Angewandte Chemie International Edition. (2021) 2: 23946-23974
[2] Chui SS-Y, Lo SM-F, Charmant JP, Orpen AG, Williams ID. Science. (1999) 283:1148-50.
[3] Li H, Li L, Lin R-B, Zhou W, Zhang Z, Xiang S, et al. EnergyChem. (2019) 1:100006.
[4] Caddeo F, Vogt R, Weil D, Sigle W, Toimil-Molares ME, Maijenburg AW. ACS applied materials & interfaces . (2019)11:25378-87.