This presentation will also explore our group’s recent efforts to integrate PSI with advanced materials, including the conducting polymers polyaniline (PANI), polypyrrole, polyviologens, and poly(3,4-ethylenedioxythiophene). These composite assemblies enhance charge shuttling processes from individual proteins within multilayer assemblies—greatly reducing charge transfer resistances and improving overall efficiency of photocells. These PSI/conducting polymer composites can be prepared by either electrochemical co-polymerization from a bath of PSI and aniline or a vapor-phase Friedel-Crafts grafting procedure. The group has reported two new prototype solid-state devices in which PSI or PSI/PANI is sandwiched between energetically appropriate electrodes. The group has also succeeded in stabilizing PSI films via crosslinking to create “wet” photoelectrochemical cells with greater performance and longevity. Finally, our current work is aimed at building new prototypes using PSI in solid state interfaces for scalable solar energy conversion. Finally, the incorporation of PSI into conducting polymer frameworks holds promise for improved conductivity and orientational control in the photoactive layers in these devices.