Thursday, 23 June 2016: 16:30
Grand Ballroom (Hyatt Regency)
As a promising candidate for next generation energy storage system, Li-air battery has generated a great deal of interest over the past decade. However, realization of the practical Li-air battery is a formidable challenge, and is impeded by some fundamental key issues including the degraded capacity, limited cycle life, notoriously low round-trip efficiency and limited stability of battery components, which are currently being tackled by numerous approaches. From the viewpoint of fundamental study, a better understanding of the oxygen electrode reactions in aprotic electrolyte will be beneficial to the realization of Li-air batteries with improved electrochemical performances. Here, a mechanistic study of oxygen electrochemistry in aprotic Li+ electrolyte has been conducted using Raman spectroelectrochemistry coupled with density functional theory calculations. By spectroscopic identification of oxygen intermediates under various operating conditions, different routes for Li2O2 formation have been revealed.