Metal-Air Batteries

Tuesday, 21 June 2016: 08:15
Grand Ballroom (Hyatt Regency)
P. G. Bruce (University of Oxford)
Li-ion and related battery technologies will be important for years to come. However, society needs energy storage that exceeds that of Li-ion batteries. We must explore alternatives to Li-ion if we are to have any hope of meeting the long-term needs for energy storage. One alternative is the Li-air (O2) battery, Fig. 1; its theoretical specific energy exceeds that of Li-ion, but many hurdles face its realization.[1-5]

One spin-off of the recent interest in rechargeable Li-O2 batteries, based on aprotic electrolytes is that it has highlighted the importance of understanding the fundamental oxygen redox processes at the positive electrode within the battery.[6-15] As a result of these fundamental studies it is generally accepted that a solution growth mechanism for Li2O2 will be required to achieve high rates and capacities, avoiding the formation of passivating Li2O2 films on the electrode surface.  Recent results exploring the electrochemical mechanism of O2 reduction to form Li2O2 at the positive electrode have identified new strategies to achieve this by exploiting the effect of the electrolyte solution. Moving to a solution phase discharge mechanism highlights the requirement for charge mediation between the electroactive species and the electrode, thus using solid Li2O2 simply as a storage material for lithium ions and electrons. The implications of this will be discussed


[1]. Bruce, P. G.; Freunberger, S. A.; Hardwick, L. J.; Tarascon, J.-M. Nature Materials 2012, 11, 19. [2]. Lu, Y. C.; Gallant, B. M.; Kwabi, D. G.; Harding, J. R.; Mitchell, R. R.; Whittingham, M. S.; Shao-Horn, Y. Energy & Environmental Science 2013, 6, 750. [3]. Black, R.; Adams, B.; Nazar, L. F. Advanced Energy Materials 2012, 2, 801. [4]. Girishkumar, G.; McCloskey, B.; Luntz, A. C.; Swanson, S.; Wilcke, W. The Journal of Physical Chemistry Letters 2010, 1, 2193. [5]. Li, F.; Zhang, T.; Zhou, H. Energy & Environmental Science 2013, 6, 1125. [6]. Adams, B. D.; Radtke, C.; Black, R.; Trudeau, M. L.; Zaghib, K.; Nazar, L. F. Energy & Environmental Science 2013, 6, 1772. [7]. Horstmann, B.; Gallant, B.; Mitchell, R.; Bessler, W. G.; Shao-Horn, Y.; Bazant, M. Z. The Journal of Physical Chemistry Letters 2013, 4, 4217. [8]. Hummelshoj, J. S.; Luntz, A. C.; Norskov, J. K. The Journal of Chemical Physics 2013, 138, 034703. [9]. McCloskey, B. D.; Scheffler, R.; Speidel, A.; Girishkumar, G.; Luntz, A. C. The Journal of Physical Chemistry C 2012, 116, 23897. [10]. Mitchell, R. R.; Gallant, B. M.; Shao-Horn, Y.; Thompson, C. V. The Journal of Physical Chemistry Letters 2013, 4, 1060. [11]. Trahan, M. J.; Mukerjee, S.; Plichta, E. J.; Hendrickson, M. A.; Abraham, K. M. Journal of The Electrochemical Society 2013, 160, A259. [12]. Sharon, D.; Etacheri, V.; Garsuch, A.; Afri, M.; Frimer, A. A.; Aurbach, D. The Journal of Physical Chemistry Letters 2012, 4, 127. [13]. Jung, H. G.; Kim, H. S.; Park, J. B.; Oh, I. H.; Hassoun, J.; Yoon, C. S.; Scrosati, B.; Sun, Y. K. Nano Letters 2012, 12, 4333. [14]. Peng, Z.; Freunberger, S. A.; Hardwick, L. J.; Chen, Y.; Giordani, V.; Barde, F.; Novak, P.; Graham, D.; Tarascon, J. M.; Bruce, P. G. Angewandte Chemie International Edition 2011, 50, 6351. [15]. Zhai, D.; Wang, H. H.; Yang, J.; Lau, K. C.; Li, K.; Amine, K.; Curtiss, L. A. Journal of the American Chemical Society 2013, 135, 15364.