Since the pioneer work by Aurbach group in 2000 with the design of the prototype Mg-Mo6S8 battery using the famous dichloro-complex electrolyte (nBu2Mg + EtAlCl2 in THF),4,5 a lot of efforts have been devoted to the development of high-performance magnesium electrolytes, including the discovery of a few examples with above 3 V (vs Mg/Mg2+) oxidative stabilities.6-10 In contrast to the rapid progress of efficient electrolytes capable of plating/stripping magnesium with wide electrochemical windows, the development of high-performance cathode material is far behind for magnesium storage. Chevral phase Mo6S8 is still the only reliable cathode for Mg-ion batteries to date. However, the relatively low working voltage (< 1.3 V vs Mg) and low theoretical capacity (130 mAh g-1) cannot meet the requirement for high density energy storage. Unfortunately, most of the state-of-the-art metal oxide-based cathode materials were proven unsuccessfully for magnesium storage. In addition to the traditional intercalation type materials, redox-active organic molecule is an alternative solution to provide high voltage high capacity cathodes Mg-ion batteries.11-13 Here, we would like to report our recent progress on the development of a series of redox-active organic molecules as potential high voltage and high capacity cathode materials for efficient magnesium storage. Excellent electrochemical reversibility has been established for the Mg-Organic battery cell by the steady-state cyclic voltammetry measurement. The sustainable cycling performance was further highlighted by the very small amount of capacity loss upon cycling. At a reasonable rate of 0.5C, above 100 mAh g-1 discharge capacity was obtained initially, of which 99% can be retained in at least 100 cycles. The excellent cyclability further highlights the great potential of redox-active organic molecules as high-performance cathode material for Mg-ion batteries.
(1) Saha, P.; Datta, M. K.; Velikokhatnyi, O. I.; Manivannan, A.; Alman, D.; Kumta, P. N. Prog Mater Sci 2014, 66, 1.
(2) Muldoon, J.; Bucur, C. B.; Gregory, T. Chem Rev 2014, 114, 11683.
(3) Yoo, H. D.; Shterenberg, I.; Gofer, Y.; Gershinsky, G.; Pour, N.; Aurbach, D. Energ Environ Sci 2013, 6, 2265.
(4) Aurbach, D.; Lu, Z.; Schechter, A.; Gofer, Y.; Gizbar, H.; Turgeman, R.; Cohen, Y.; Moshkovich, M.; Levi, E. Nature 2000, 407, 724.
(5) Lipson, A. L.; Pan, B.; Lapidus, S. H.; Liao, C.; Vaughey, J. T.; Ingram, B. J. Chem Mater 2015, 27, 8442.
(6) Pan, B.; Zhang, J.; Huang, J.; Vaughey, J. T.; Zhang, L.; Han, S.-D.; Burrell, A. K.; Zhang, Z.; Liao, C. Chem Commun 2015, 51, 6214.
(7) Liu, T.; Shao, Y.; Li, G.; Gu, M.; Hu, J.; Xu, S.; Nie, Z.; Chen, X.; Wang, C.; Liu, J. Journal of Materials Chemistry A 2014, 2, 3430.
(8) Liao, C.; Guo, B.; Jiang, D.-e.; Custelcean, R.; Mahurin, S. M.; Sun, X.-G.; Dai, S. Journal of Materials Chemistry A 2014, 2, 581.
(9) Carter, T. J.; Mohtadi, R.; Arthur, T. S.; Mizuno, F.; Zhang, R. G.; Shirai, S.; Kampf, J. W. Angew Chem Int Edit 2014, 53, 3173.
(10) Zhao-Karger, Z.; Zhao, X. Y.; Fuhr, O.; Fichtner, M. Rsc Adv 2013, 3, 16330.
(11) Song, Z. P.; Zhou, H. S. Energ Environ Sci 2013, 6, 2280.
(12) Haupler, B.; Wild, A.; Schubert, U. S. Adv Energy Mater 2015, 5.
(13) Pan, B.; Zhou, D.; Huang, J.; Zhang, L.; Burrell, A. K.; Vaughey, J. T.; Zhang, Z.; Liao, C. J Electrochem Soc 2016, 163, A580.