We now use this basic understanding and these improvements in sample quality to systematically investigate the effect of the chemical environment on the optical properties of the liquid-exfoliated nanosheets. For example, we show that the A-exciton energy depends on the layer number in a similar way for a number of different TMDs. Furthermore, dielectric screening from additives and solvents can be tracked via this A-exciton layer number dependence making this an ideal fingerprint for noncovalent functionalisation.[4] Last but not least, we show that the ability to dramatically increase the surface area of the layered materials on exfoliation can be used to explore new chemistry and to controllably functionalise either basal plane [5,6] or edge sites.
[1] Bonaccorso, F., Bartolotta, A.; Coleman, J.N., Backes, C., Adv. Mater. 2016, 28, 6136-6166.
[2] Backes, C.; Szydłowska, B.M.; … Coleman, J. N., ACS Nano 2016, 10, 1589-1601.
[3] Backes, C.; Smith, R. J.; … Coleman, J. N., Nature Communications 2014, 5, 4576.
[4] Vega-Mayoral, V.; Backes, C.; …. Coleman, J. N., Adv. Func. Mater. 2016, 7, 1028-1039.
[5] Backes, C.; Berner, N. C.; …. McDonald, A., Angew. Ch. Int. Ed.. 2015, 54, 1-6.
[6] Knirsch, K.; Berner, N. C.; …. Backes, C., ACS Nano 2015, 9, 6018-6030.