114
Evaluation of Commercial High Energy Lithium Primary Cells for Wide Temperature Range Aerospace Applications

Wednesday, 31 May 2017: 14:10
Grand Salon C - Section 15 (Hilton New Orleans Riverside)
F. C. Krause (Jet Propulsion Lab., California Institute of Technology), S. C. Jones, E. J. Brandon (JPL/Caltech), B. V. Ratnakumar (Jet Propulsion Laboratory), J. P. Jones, W. C. West, J. Pasalic, and K. J. Billings (JPL/Caltech)
As NASA missions become increasingly demanding of robust, lightweight, and compact power sources, there is a need to develop long-life and high-energy battery systems. Lithium-ion batteries have been developed at JPL over the last two decades and have been successfully integrated into a number of NASA missions [1] in conjunction with solar arrays and radioisotope thermoelectric generator (RTG) power sourcesIn the case of short-term missions in extremely harsh conditions (i.e., thirty days or less and/or at temperatures reaching -4°C) without an active thermal management system, lithium primary cells may be considered for their high specific energy, especially in environments where recharging secondary cells would be challenging [2]The icy moons of the Jovian system, for example, offer little sunlight for photovoltaic power and Jupiter’s intense magnetosphere leads to constant potentially damaging radiation.

Many types of commercial lithium primary cells are available, reportedly offering high specific energies of ~500 Wh kg-1, with some designed specifically for low temperature operation. These commercial cells must be validated for space missions with extensive testing to demonstrate their performance, safety, reliability, and suitability for space environmentsRadiation tolerance is also an important consideration, both as a method of sterilization for planetary protection and for survival in high radiation environments.

In the present study, we have evaluated a number of commercial lithium primary cells (ranging from AA to DD+ sizes) of varying chemistries (with CFx, MnO2, SOCl2, SO2, and FeS2 cathodes) and manufacturers for possible future use in NASA’s deep space missions. We have assessed various performance characteristics of these cells, including low temperature energyrate capability, and tolerance to radiation exposure, which will be reported here.

Acknowledgement

The work described herein was carried out at the Jet Propulsion Laboratory, California Institute of Technology, under contract with the National Aeronautics and Space Administration (NASA) and supported by the NASA Space Technology Mission Directorate Game Changing Development Program.

References

[1] Ratnakumar, B. V., Smart, M. C., Huang, C. K., Perrone, D., Surampudi, S., & Greenbaum, S. G. (2000). Lithium ion batteries for Mars exploration missions.Electrochimica Acta, 45(8-9), 1513–1517. doi:10.1016/S0013-4686(99)00367-9

[2] J.F. Whitacre, W.C. West, M.C. Smart, R. Yazami, G.K. Surya Prakash, A. Hamwi, et al., Enhanced Low-Temperature Performance of Li – CF x Batteries, Electrochem. Solid-State Lett. . 10 (2007) A166–A170.doi:10.1149/1.2735823