629
(Invited) New Glycofullerenes for Ebola Virus Infection

Wednesday, 31 May 2017: 16:40
Churchill A2 (Hilton New Orleans Riverside)
J. Ramos-Soriano (CSIC. Universidad de Sevilla), A. Pérez, L. Rodríguez-Pérez, B. Illescas (Universidad Complutense), J. Rojo (CSIC. Universidad de Sevilla), R. Delgado (Hospital Doce de Octubre, Madrid), and N. Martín (Universidad Complutense)
Multivalency is an important issue in the study of carbohydrate−protein interactions as well as for getting a better understanding of the virus infection processes. Thus, different chemical and bio-inspired scaffolds have been used in the literature in the search for new glycoconjugates bearing larger units of carbohydrates located in the appropriate spatial arrangement.

At the molecular level, there are a wide variety of examples where multivalency drastically enhances the interactions between biomolecules in comparison with the monovalent binding. The search for high-affinity ligands for the study and understanding of the mechanisms involved in multivalent interactions has yielded a wide variety of artificial glycoconjugates which include, among others, glycopolymers, glycodendrimers, and glyconanoparticles. Recently, we have shown that hexakis-adducts of [60]fullerene endowed with 12, 24 or 36 mannoses, act as strong inhibitors for DC-SIGN in an Ebola infection assay model.1 Furthermore, a drastic increase in the inhibition process to the subnanomolar scale has been observed when the size and mannoses´ number are increased in the tridecafullerenes endowed with 120 mannose units decorating the periphery of the molecule.2

In this work, we report the synthesis and study of novel carbon nanostructures and carbohydrates for the multivalent presentation in an artificial Ebola virus infection model. These new carbon nanoforms have been chemically modified by the covalent attachment of glycofullerenes using the CuAAC “click chemistry” approach as well as in the absence of Cu in order to prevent the unfavorable metal effect.3 The efficiency to block DC-SIGN mediated viral infection by an artificial Ebola virus has been tested in a cellular experimental assay finding that, these systems are potent inhibitors of viral infection.

References

1. a) J. Luczkowiak, A. Muñoz, M. Sánchez-Navarro, R. Ribeiro-Viana, A. Ginieis, B. M. Illescas, N. Martín, R. Delgado, J. Rojo, Biomacromolecules 201314, 431-437; b) J.-F. Nierengarten, J. Iehl, V. Oerthel, M. Holler, B. M. Illescas, A. Muñoz, N. Martín, J. Rojo, M. Sánchez-Navarro, S. Cecioni, S. Vidal, K. Buffet, M. Durka, S. P. Vincent, Chem. Commun. 201046, 3860-3862; c) M. Sánchez-Navarro, A. Muñoz, B. M. Illescas, J. Rojo, N. Martín, Chem. Eur. J. 201117, 766-769.

2. A. Muñoz, D. Sigwalt, B. M. Illescas, J. Luczkowiak, L. Rodríguez, I. Nierengarten, M. Holler, J.-S. Remy, K. Buffet, S. P. Vincent, J. Rojo, R. Delgado, J.-F. Nierengarten, N. Martín, Nat. Chem.2016, 8, 50-57 - DOI: 10.1038/NCHEM.2387.

3. J. Ramos-Soriano, J. Juan Reina, A. Pérez-Sánchez, B. M. Illescas, J. Rojo, N. Martin, Chem. Commun., 201652, 10544-10546 - DOI: 10.1039/C6CC05484F