We have developed a number of photosynthetic reaction center models composed of metalloporphyrins and fullerenes with comparable charge-separated state lifetimes with that of the natural photosynthetic reaction center.[1-3] The light-harvesting unit and the charge-separation unit have been combined by utilizing coordination bonds, hydrogen bond, electrostatic interactions and p-p interactions.[4,5] The efficient photosynthetic reaction center models have been successfully combined with the catalytic water reduction unit to attain the most efficient photocatalytic hydrogen evolution system.[6-8]
The activation of hydrogen has also been achieved by developing the first structural and functional model of hydrogenases,[9] which enables to replace precious Pt catalyst by much more earth-abundant metal catalyst for hydrogen evolution.[10] With regard to water oxidation, we have developed efficient and robust water oxidation catalysts using earth-abundant metal oxides nanoparticles.[11] We have also clarified the significant role of redox-inactive metal ions on enhancement of electron-transfer reactions of high-valent metal-oxo complexes, which is classified as metal ion-coupled electron transfer,[12,13] in relation with the pivotal role of Ca2+ in the oxygen evolving complex (OEC) in Photosystem II.[14,15]
By combination of the catalytic four-electron water oxidation and the photocatalytic two-electron reduction of O2 using solar energy, we have succeeded in production of hydrogen peroxide (H2O2) as a solar fuel from water and O2 in the air.[16,17] We have also achieved efficient photocatalytic production of H2O2 from the most earth abundant seawater instead of precious pure water and O2 in the air using a two-compartment photoelectro-chemical cell with WO3 as a photocatalyst for water oxidation and a cobalt chlorin complex supported on a glassy-carbon substrate for the selective two-electron reduction of O2.[18] The highest solar energy conversion efficiency was determined to be 6.6% under simulated solar illumination adjusted to 0.05 sun after 1 h photocatalytic reaction (0.89% under 1sun illumination) when WO3 was replaced by the surface modified BiVO4 with iron(III) oxide(hydroxide) (FeO(OH)) as a water oxidation catalyst in the photoanode.[20]
We have also developed one-compartment H2O2 fuel cells using H2O2 produced in seawater as a solar fuel and earth-abundant metal catalysts.[18,20,22] Thus, the combination of the photocatalytic H2O2 production from seawater and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than H2.[18]
References
[1] Fukuzumi, S.; Ohkubo, K.; Suenobu, T. Acc. Chem. Res. 2014, 47, 1455-1464.
[2] Fukuzumi, S. Phys. Chem. Chem. Phys. 2008, 10, 2283.
[3] Fukuzumi, S.; Ohkubo, K. J. Mater. Chem. 2012, 22, 4575.
[4] Fukuzumi, S.; Ohkubo, K.; D’Souza, F.; Sessler, J. L. Chem. Commun. 2012, 48, 9801-9815.
[5] Yamada, M.; Ohkubo, K.; Shionoya, M.; Fukuzumi, S. J. Am. Chem. Soc. 2014, 136, 13240-13248.
[6] Fukuzumi, S.; Yamada, Y.; Suenobu, T.; Ohkubo, K.; Kotani, H, Energy Environ. Sci. 2011, 4, 2754-2766.
[7] Fukuzumi, S.; Yamada, Y. J. Mater. Chem. 2012, 22, 24284-24296.
[8] Fukuzumi, S. Curr. Opinion Chem. Biol. 2015, 25, 18-26.
[9] Ogo, S.; Kabe, R.; Uehara, K.; Kure, B.; Nishimura, T.; Menon, S. C.; Harada, R.; Fukuzumi, S.; Higuchi, Y.; Ohhara, T.; Tamada, T.; Kuroki, R. Science 2007, 316, 585-587.
[10] Yamada, Y.; Miyahigashi, T.; Kotani, H.; Ohkubo, K.; Fukuzumi, S. Energy Environ. Sci. 2012, 5, 6111-6118.
[11] Hong, D.; Yamada, Y.; Nagatomi, T.; Takai, Y.; Fukuzumi, S. J. Am. Chem. Soc. 2012, 134, 19572-19575.
[12] Fukuzumi, S. Prog. Inorg. Chem. 2009, 56, 49-153.
[13] Fukuzumi, S.; Ohkubo, K.; Lee, Y.-M.; Nam, W. Chem.–Eur. J. 2015, 21, 17548-17559.
[14] Fukuzumi, S.; Morimoto, Y.; Kotani, H.; Naumov, P.; Lee, Y.-M.; Nam, W. Nat. Chem. 2010, 2, 756-759.
[15] Bang, S.; Lee, Y.-M.; Hong, S.; Nishida, Y.; Seo, M. S.; Sarangi, R.; Fukuzumi, S.; Nam, W. Nat. Chem. 2014, 6, 934-940.
[16] Kato, S.; Jung, J.; Suenobu, T.; Fukuzumi, S. Energy Environ. Sci. 2013, 6, 3756-3764.
[17] Isaka, Y.; Kato, S.; Hong, D.; Suenobu, T.; Yamada, Y.; Fukuzumi, S. J. Mater. Chem. A 2015, 3, 12404-12412.
[18] Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. Nat. Commun. 2016, 7, 11470.
[19] Mase, K.; Yoneda, M.; Yamada, Y.; Fukuzumi, S. ACS Energy Lett. 2016, 1, 913-919.
[20] Yamada, Y.; Yoneda, M.; Fukuzumi, S. Energy Environ. Sci. 2015, 8, 1698-1701.
[21] Fukuzumi, S.; Yamada, Y. ChemElectroChem 2016, 3, in press.