Graphene systems, which were substitutionally doped with alkaline-earth elements, were investigated through density functional theory (DFT) calculations to elucidate its energetics and electronic properties. A localized ionic bonding between alkaline-earth elements and the graphene substrate was observed, with greater charge transfer as inferred by Bader analysis for Be and Mg. The localized nature of the charge transfer from the dopant to the adjoining carbon atoms in the substrate is a novel property of AE-doped graphene. Semi-metallic properties due to strongly localized states near the Fermi level have been observed for all AE-doped graphenes except for Be. For Be, p-type semiconductor properties were observed consistent with previous studies on Be doped graphene.
This will provide the groundwork for further study towards the use of alkaline-earth metal dopants in an alternative precious-metal free cathode material for metal-air battery and fuel cell applications. The basic and exploratory nature of this scientific study is also expected to open a path towards other emergent applications for the catalysis of other reactions, as well as in electronics and other domains. Observable trends between different alkaline-earth doped graphenes have also been investigated.