1994
Transition Metal Oxide-Based Conversion Reaction for High-Capacity Lithium-Ion Batteries

Tuesday, 30 May 2017
Grand Ballroom (Hilton New Orleans Riverside)

ABSTRACT WITHDRAWN

The increasing demand for high efficiency large-scale energy storage applications (e.g. electric vehicles) has led to an expansion in new developmental efforts for high energy-density lithium-ion batteries. However, commercial graphite anodes based on conventional intercalation reaction (involving insertion or extraction of Li ions into or from a layer-type crystal structure) have been faced with a low theoretical specific capacity which prevents them from being applied in advanced energy storages. Transition metal oxide-based conversion reaction (2yLi++ MxOy xM + yLi2O) could be a novel approach to resolve the aforementioned issues. Here, a facile method is used where layers of nickel oxide (NiO) were formed on 3D Ni substrate via thermal oxidation; subsequently, graphene layers were directly grown on the 3D NiO-Ni structure. Within this structure, porous 3D Ni substrate offers high surface area to form a large loading amount of NiO; also, graphene layers provide structural buffer against volume variations during cycling. Thus, enhanced electrochemical performance is achieved by extending the cycle life and by improving the areal capacity of LIB. The 3D graphene-NiO-Ni structure delivered around 28 mg cm-2 areal density and exhibited an areal capacity of 1.2 mAh cm-2 at 0.1 mA cm-2. The excellent properties and a novel design of the 3D graphene-NiO-Ni anode will contribute to the development of large-scale lithium ion batteris.