790
Tuning the Optical Band Gap of Graphene Oxide By Ozone Treatment

Tuesday, 30 May 2017
Grand Ballroom (Hilton New Orleans Riverside)
M. T. Hasan, B. Senger Jr., R. Gonzalez-Rodriguez, and A. V. Naumov (Texas Christian University)
Graphene oxide (GO) inherits high transparency, substantial conductivity, high tensile strength from its parent materials graphene. Apart from these properties, it emits fluorescence which makes it a potential material to use in optoelectronics and bio-sensing applications. In this work, we have utilized systematic ozone treatment to alter the optical band gap of single-layered graphene oxide in aqueous suspensions. Due to controlled ozonation, additional functionalization takes place in GO graphitic sheet which changes GO electronic structure. This is confirmed by the increase in vibrational transitions of a number of oxygen-containing functional groups with treatment and the appearance of the prominent carboxylic group feature at c.a. 1700 cm-1. Albeit, timed ozone induction introduces only slight change in color and absorption spectra of GO samples, the emission spectra show a gradual increase in intensity with a significant blue shift up to 100 nm from deep red to green. This large blue shift suggests an increase in optical band gap with additional functionalization introduced by ozone treatment. We utilize a semi-empirical theoretical approach to describe the effects of functionalization-induced changes. This model attributes the origins of fluorescence emission to the quantum confined sp² carbon islands in GO encircled by the functional groups. As we decrease the graphitic carbon cluster size on the GO sheet, the optical bandgap calculated via HyperChem molecular modeling increases, which supports the experimentally observed blue shifts in emission. This theoretical result is further supported by the TEM of ozone-treated samples, which shows a decreasing trend of average ordered graphitic carbon cluster size on GO sheets with treatment time. Theoretical modeling, as well as the experimental results, indicate that the optical bandgap and emission intensity of GO are alterable with controlled ozone treatment, which allows tailoring the optical properties of GO for specific applications in optoelectronics and bio-sensing.