Significant attention has been paid to ceramic electrolytes due to their high Li-ion conductivity at room temperature and robustness. Nevertheless, processing and manufacturing of the ceramics into sufficiently thin, highly dense, pinhole-free sheets, required for high specific energy and power devices, remains an active challenge. Additionally, the electrolyte must maintain contact with the solid electrodes while simultaneously inhibiting Li dendrites as well as be durable towards electrode volume changes and to external shock.
Polymer electrolytes have been developed for a number of years. The advantages include good adhesion and contact to the electrodes. Still, their low conductivity at room temperature, especially in solid polymer electrolytes, along with their limited capability of suppressing Li dendrite formation, are persistent drawbacks.[i]
To date, ceramic and polymer electrolytes remain a challenge. Hybrids with particulate ceramics embedded in polymer electrolytes have been investigated to improve the conductivity and mechanical properties.[ii]Our approach is to create continuously ordered hybrid electrolytes, which allows modification of the mechanical properties of the hybrid while retaining a high ionic conductivity through the ceramic phase.
The ionic conductivity of the hybrid electrolyte is 1.5 x 10-4S/cm at 25 °C. The results of different ceramic-polymer compositions indicate that the mechanical properties of the hybrids can be adjusted by the presented approach. Electrochemical, mechanical, and microstructural characterizations of the hybrid will be reported.