Due to improved kinetics for ORR in alkaline media, it is necessary to also develop PGM-Free anode catalysts for HOR. Between all PGM-Free metals, Ni has shown a significant potential in catalyzing HOR reaction, however, due to oxidation of Ni in alkaline media, as well as the need to tune the binding energy of adsorbed hydrogen (Had) on the nickel active sites, alloying Ni with other PGM-Free transition metals is a promising strategy to improve the HOR performance as well as the stability of these catalysts. It has also been shown that Tungsten doped nickel can act as a stable catalyst in alkaline media toward HOR. [2], [3]
We prepared NiW composites (which activity is shown in figure 1.) using Incipient Wetness Method (IWM), adding compounds of Ni and W to carbon support and then pyrolyzed for the composite to form and stabilize on the carbon support. Here, we will present on advances in the NiW system for HOR in alkaline media relating to: electrochemical corrosion, MEA performance and the role of the support material on HOR kinetics and stability of these NiW composites.
References:
1- S. Lu et al. Proc. Nat. Acad. Sci., 105 (2018) 20611-20614
2- Q. Hu et al. Int. J. Hydrogen Energy, 38 (2013) 16264-16268
3- Z. Zhuang et al. Nature Communications, 17, (2016), 10141