A series of designed experiments similar to those presented in Rahim et al [2] is performed using the selected ranges of each parameter. A total of nine MEAs with different parameters are evaluated using polarization curves and electrochemical impedance spectroscopy (EIS) in single cells with an active area of 14.44 cm2. The impedance measurements are performed in the low current density regime (up to 100 mA/cm2) and with a very high cathode stoichiometry (operation as a differential cell – constant conditions inside the cell with hardly any depletion of oxygen between inlet and outlet). This makes it possible to characterize the CCL on the basis of characteristic fuel cell parameters by almost eliminating the mass transport losses within the CCL. Cell impedance is measured at four selected current densities of 10, 20, 50 and 100 mA/cm2. The impedance spectra are fitted with an equivalent circuit model (ECM) to extract the ohmic resistance (RΩ) of the cell, the activation resistance (Ract), the protonic resistance (Rp) and the double layer capacitance (Cdl) of the CCL. All of these cell parameters are found to be a strong function of current density in agreement with some of the observations made by Wippermann et al [3], especially concerning the RΩ.
Finally, a comparison is made between all MEAs and the optimum level for each material parameter is analyzed based on the obtained cell parameters and a discussion of the underlying physics.
References
[1] Liu F, Mohajeri S, Di Y, Wippermann K, Lehnert W. Influence of the Interaction between Phosphoric Acid and Catalyst Layers on the Properties of HT-PEFCs. Fuel Cells 2014;14:750–7. doi:10.1002/fuce.201300272.
[2] Rahim Y, Janßen H, Lehnert W. Characterizing membrane electrode assemblies for high temperature polymer electrolyte membrane fuel cells using design of experiments. Int J Hydrogen Energy 2017;42:1189–202. doi:10.1016/j.ijhydene.2016.10.040.
[3] Wippermann K, Wannek C, Oetjen HF, Mergel J, Lehnert W. Cell resistances of poly(2,5-benzimidazole)-based high temperature polymer membrane fuel cell membrane electrode assemblies: Time dependence and influence of operating parameters. J Power Sources 2010;195:2806–9. doi:10.1016/j.jpowsour.2009.10.100.