115
The Impact of Crystallinity on Mesoporous TiO2 Nanoparticle Electrode for Li- and Na- Ion Batteries

Thursday, 5 October 2017: 11:00
Maryland D (Gaylord National Resort and Convention Center)
C. Deng, M. L. Lau, B. Williford (Boise State University), Y. Liu (Center for Nanoscale Materials), J. Xu, W. Tong (Lawrence Berkeley National Laboratory), K. Smith (Boise State University), F. Guo (Argonne National Laboratory), Y. Ren (Advanced Photon Source, Argonne National Laboratory), and H. Xiong (Boise State University)
Demands for rechargeable batteries have been significantly increasing not only in portable electronics (e.g. cell phones and laptops), but also in large-scale energy storage systems (e.g. grids).1-3 TiO2 as anode materials is electrochemically active in both lithium and sodium ion batteries. It has drawn significant attentions due to its nontoxicity, stability, low production cost and high capacity. Indeed, many works have been conducted to study the impact of morphology, particle size, facet control and electronic structure manipulation on the electrochemical performance of TiO2 materials in either lithium or sodium ion batteries.4-9 In addition, in terms of crystalline structures, TiO2 materials with various polymorphs, for example, anatase (tetragonal, I41/amd), rutile (tetragonal, P42/mnm), TiO2-B (monoclinic, C2/m), brookite (orthorhombic, Pbcv) and amorphous TiO2 have been extensively investigated.10-14

Previously, Xiong et al. observed a phase transformation from amorphous to face-centered cubic phase when the amorphous TiO2 nanotube electrode first discharged under 1 V vs. Li/Li+, significantly self-improving the long-term reversibility and specific capacity.15 Xiong et al. also investigated the electrochemical performance of amorphous TiO2 nanotubes as anode materials in sodium cell.14Though capacity increased gradually with charge-discharge cycling, the phase transition from amorphous to cubic phase was not observed.

Herein, we demonstrate the impact of various degree of crystallinity on pure TiO2 anode materials for both Li and Na ion batteries. XRD, Raman, selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM) were conducted to confirm the gradually crystalized TiO2 nanoparticles. Electrochemical performance of TiO2 nanoparticles was tested by voltage profile, rate capability, cycle life, cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). Structure evolution during cycling was tested by ex situRaman spectroscopy and soft XAS.

References

1. F. Y. Cheng, J. Liang, Z. L. Tao and J. Chen, Adv Mater, 2011, 23, 1695-1715.

2. H. S. Chen, T. N. Cong, W. Yang, C. Q. Tan, Y. L. Li and Y. L. Ding, Prog Nat Sci, 2009, 19, 291-312.

3. B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334, 928-935.

4. X. J. Zhang, M. Wang, G. Zhu, D. S. Li, D. Yan, T. Lu and L. K. Pan, Ceram Int, 2017, 43, 2398-2402.

5. J. Chen, Y. Zhang, G. Q. Zou, Z. D. Huang, S. M. Li, H. X. Liao, J. F. Wang, H. S. Hou and X. B. Ji, Small, 2016, 12, 5554-5563.

6. J. Lee, J. K. Lee, K. Y. Chung, H. G. Jung, H. Kim, J. Mun and W. Choi, Electrochim Acta, 2016, 200, 21-28.

7. S. Qiu, L. F. Xiao, X. P. Ai, H. X. Yang and Y. L. Cao, Acs Appl Mater Inter, 2017, 9, 345-353.

8. Y. Y. Zhang, Y. X. Tang, W. L. Li and X. D. Chen, Chemnanomat, 2016, 2, 764-775.

9. Y. Liu and Y. F. Yang, J Nanomater, 2016.

10. V. Aravindan, Y. S. Lee, R. Yazami and S. Madhavi, Mater Today, 2015, 18, 345-351.

11. L. M. Wu, D. Bresser, D. Buchholz and S. Passerini, J Electrochem Soc, 2015, 162, A3052-A3058.

12. T. B. Lan, T. Wang, W. F. Zhang, N. L. Wu and M. D. Wei, J Alloy Compd, 2017, 699, 455-462.

13. X. M. Yang, C. Wang, Y. C. Yang, Y. Zhang, X. N. Jia, J. Chen and X. B. Ji, J Mater Chem A, 2015, 3, 8800-8807.

14. H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson and T. Rajh, J Phys Chem Lett, 2011, 2, 2560-2565.

15. H. Xiong, H. Yildirim, E. V. Shevchenko, V. B. Prakapenka, B. Koo, M. D. Slater, M. Balasubramanian, S. K. R. S. Sankaranarayanan, J. P. Greeley, S. Tepavcevic, N. M. Dimitrijevic, P. Podsiadlo, C. S. Johnson and T. Rajh, J Phys Chem C, 2012, 116, 3181-3187.