Previously, Xiong et al. observed a phase transformation from amorphous to face-centered cubic phase when the amorphous TiO2 nanotube electrode first discharged under 1 V vs. Li/Li+, significantly self-improving the long-term reversibility and specific capacity.15 Xiong et al. also investigated the electrochemical performance of amorphous TiO2 nanotubes as anode materials in sodium cell.14Though capacity increased gradually with charge-discharge cycling, the phase transition from amorphous to cubic phase was not observed.
Herein, we demonstrate the impact of various degree of crystallinity on pure TiO2 anode materials for both Li and Na ion batteries. XRD, Raman, selected area electron diffraction (SAED) and high resolution transmission electron microscopy (HRTEM) were conducted to confirm the gradually crystalized TiO2 nanoparticles. Electrochemical performance of TiO2 nanoparticles was tested by voltage profile, rate capability, cycle life, cyclic voltammetry (CV) and galvanostatic intermittent titration technique (GITT). Structure evolution during cycling was tested by ex situRaman spectroscopy and soft XAS.
References
1. F. Y. Cheng, J. Liang, Z. L. Tao and J. Chen, Adv Mater, 2011, 23, 1695-1715.
2. H. S. Chen, T. N. Cong, W. Yang, C. Q. Tan, Y. L. Li and Y. L. Ding, Prog Nat Sci, 2009, 19, 291-312.
3. B. Dunn, H. Kamath and J. M. Tarascon, Science, 2011, 334, 928-935.
4. X. J. Zhang, M. Wang, G. Zhu, D. S. Li, D. Yan, T. Lu and L. K. Pan, Ceram Int, 2017, 43, 2398-2402.
5. J. Chen, Y. Zhang, G. Q. Zou, Z. D. Huang, S. M. Li, H. X. Liao, J. F. Wang, H. S. Hou and X. B. Ji, Small, 2016, 12, 5554-5563.
6. J. Lee, J. K. Lee, K. Y. Chung, H. G. Jung, H. Kim, J. Mun and W. Choi, Electrochim Acta, 2016, 200, 21-28.
7. S. Qiu, L. F. Xiao, X. P. Ai, H. X. Yang and Y. L. Cao, Acs Appl Mater Inter, 2017, 9, 345-353.
8. Y. Y. Zhang, Y. X. Tang, W. L. Li and X. D. Chen, Chemnanomat, 2016, 2, 764-775.
9. Y. Liu and Y. F. Yang, J Nanomater, 2016.
10. V. Aravindan, Y. S. Lee, R. Yazami and S. Madhavi, Mater Today, 2015, 18, 345-351.
11. L. M. Wu, D. Bresser, D. Buchholz and S. Passerini, J Electrochem Soc, 2015, 162, A3052-A3058.
12. T. B. Lan, T. Wang, W. F. Zhang, N. L. Wu and M. D. Wei, J Alloy Compd, 2017, 699, 455-462.
13. X. M. Yang, C. Wang, Y. C. Yang, Y. Zhang, X. N. Jia, J. Chen and X. B. Ji, J Mater Chem A, 2015, 3, 8800-8807.
14. H. Xiong, M. D. Slater, M. Balasubramanian, C. S. Johnson and T. Rajh, J Phys Chem Lett, 2011, 2, 2560-2565.
15. H. Xiong, H. Yildirim, E. V. Shevchenko, V. B. Prakapenka, B. Koo, M. D. Slater, M. Balasubramanian, S. K. R. S. Sankaranarayanan, J. P. Greeley, S. Tepavcevic, N. M. Dimitrijevic, P. Podsiadlo, C. S. Johnson and T. Rajh, J Phys Chem C, 2012, 116, 3181-3187.